- | 6.3 V
110 VAC RMS
3 A

12 A
50 PIV

T+ L

A 2K SYMBOLIC

LM323

T Torul]

5
3

\'
A
>

10,000 uf.

FOR THE 6502

‘ASSEMBLER

CS

2114L3

D1 D2 D3 D4

@

10 KQ .
K1 bo J ‘
7400
02
RAM R/W l l 1
WE o) _WE
ABO & AO AO
AB1 1 Al Al -
AB?2 > A2 A2
AB3 > A3 , A3
AB4 — A4 2114L3 A4
ABS > AS A5
AB6 ™ A6 A6
AB7 »{ A7 A7
ABS » AS A8
AB9 — A9 ‘ A9
DI D2 D3 D4
DBO DB1 DB2 DB3

DB4 DB5 DB6 DB7

T

A 2K SYMBOLIC ASSEMBLER FOR THE 6502

Robert Ford Denison

A 2K SYMBOLIC ASSEMBLER FOR THE 6502

Copyright 1979
by Robert Ford Denison
RD5 Teeter Rd.
Ithaca, NY 14850

A1l rights reserved, including the right to reproduce the
program or documentation in machine-readable form, including
magnetic media and read-only-memory.

Cover: Schematics for a 5V, 3A regulated power supply and a

1K x 8 read/write memory block. The power supply and three

such memory blocks can be added to the basic KIM-1 microcomputer
to provide the 4K RAM required by this assembler. Parts are
available from Jameco Electronics.

ii

TABLE OF CONTENTS

1. INTRODUCTION

2. USE
L1

I
H

S

0

LMV DD PRI NDNDNDNDNDNRN
VTR WNDHEDODNNRTONOU&WNN

OF THE ASSEMBLER

Basic Concepts

Control Mode

Assembly Language Format
Edit Mode Commands
Programming Restrictions
Sample Run

Structured Programming

TING
ORY OF OPERATION

Encoding Scheme
Useful Subroutines

IFICATION

Changing Special Key Definitions
Moving Tables

Adding Custom Commands
Relocation

I/0 Requirements

APPENDIX A: AN INEXPENSIVE I1/0 SYSTEM
APPENDIX B: ANSWERS TO USER QUESTIONS

v BN
o NN N e

TABLES

Input Format for Commands and Instructions
Error Codes

Important Arrays and Pointers

Global Symbols on Page Zero

Other Global Symbols

Hierarchy of Modules

I/0 Routines

iii

42
43
44
45
48

1. INTRODUCTION

Microcomputers based on the powerful 6502 microprocessor
are becoming increasingly widespread. Business, educational,
and word-processing applications generally require expensive
disk-based systems running high level languages such as BASIC
or Pascal., Inexpensive 6502 systems have mainly been limited
to such trivial uses as games, checkbook balancing, and recipe
files. Games may, of course, be used for the nontrivial pur-
pose of learning about microcomputers.

Inexpensive systems may, however, be more than adequate for
quite sophisticated applications in the field of process control
and data acquisition. A simple example is turning a tape
recorder on at a specified time to record a radio program.
Opening and closing insulated shutters to maximize solar heat
gain while minimizing heat loss is more challenging, but could
result in considerable savings. An example of a sclentific
application is collecting data from temperature and pressure
sensors in a study of sap flow in sugar maples.

My own experience has been entirely with the MOS Technology
KIM-1, which is ideal for such applications. I first used it
to control an optical printer which was used to produce special
cinematic effects. More recently, my KIM-1 was part of a com-
plex gas analysis system for my research on nitrogen fixation
in soybeans.

Neither expensive computer hardware nor years of training
is necessary to attempt such projects. My system has only
LK RAM. I use a 330 software-scanned keyboard for input, and
use the KIM-1 display as an output device for both numbers and
letters. I learned most of what I know in this field from the
MOS Technology Programming Manual, Don Lancaster's TTL Cookbook,
BYTE magazine, and by trial and error.

The key to process control programming is the use of assembly
language. It is much faster than BASIC, and uses far less mem-
ory than high level languages. In addition, most process control
problems can be solved more easily and directly in assembly
language than in a higher level language.

An assembler makes assembly language programming consider-
ably easier by taking over the time-consuming and error-prone
task of translating assembly language into machine language.

A true assembler, such as the one described herein, allows the
programmer to refer to variables, subroutines, and lines within
subroutines using descriptive names, rather than their addresses.

This assembler outperforms all other true assemblers for
the 6502 with which I am familiar, in terms of speed and memory
efficiency. It can assemble a 128 byte module in a fraction

of a second. Programs up to 1K bytes can be assembled in a
KIM-1 system with only 4K RAM, including 2K for the assembler
itself. I would appreciate being informed of any other symbolic
assembler which can match either of these claims.

I would like to thank Dr. H. R. Luxenberg, Professor of
Computer Science at the California State University at Chico
for modifying the assembler I/0 for the SYM, and for
pointing out errors in the program and documentation. John
Geiger, of Milwaukee, found additional errors and kindly
relocated the assembler to start at address 2000. Any errors
that remain are my responsibility, and I would appreciate having
them brought to my attention.

This book is dedicated to Mike Colyar, of the Evergreen
State College, who introduced me to electronics.

2. USE OF THE ASSEMBLER

System requirements. The assembler requires a 650X-based
microcomputer with at least 4K RAM and an appropriate I1/0 device.
This documentation is based on a standard system: a KIM-1 with
3K RAM at address 0400 and a conventional computer terminal
connected to the serial interface. A second version is avail-
able for KIM-1 systems with 4K RAM at address 2000; addresses
in parentheses refer to that version.

Other systems. The assembler can be modified for use with
other systems by following the guidelines in Section 5. More
detailed instructions for specific systems will be made avail-
able as demand warrants. SYM owners see Appendix B.

Installing the assembler. To install the assembler in the
standard system, load it from cassette or listing, Begln exXecu-
tion at address 05B8 (23B8). The assembler will prempt with a
question mark, indicating that it is in control mode.

2.1 Basilc Concepts

Modes. The assembler operates in two modes. "Control"
mode allows control of the allocation of memory space, defini-
tion of variables, and related functions. "Edit" mode is used

to actually enter, modify, and assemble modules.

Modules. A "module" is a subroutine or a segment of a
program or subroutine. Each use of edit mode corresponds to
one module. Modules are limited in length to 128 bytes, but
a program may contain many modules. Total program length is
limited only by available RAM.

Module pointer. Assembled modules are stored successively
in RAM under the control of the "module pointer." This pointer
is initialized to 0C80 (2A80). It is then incremented auto-
matically each time a module is stored, to prevent the module
from being overwritten by the next module. More information on
this and other pointers is given in Table 4.1.

Symbols. A "symbol" is a name given to a specific address.
It may refer to a variable, a table, a module, a line within a
module, or some other address such as an I/O port. Symbols may
be up to six characters in length.

Global vs. local symbols. "Global" symbols are defined in
control mode and may be referenced by any module. Symbols
defined in edit mode are "local" to the module in which they
were created and may not be referenced by other modules. Line
labels are local symbols, so two modules may use identical
line labels without confusion.

Input format. Input to the assembler must be in a specific
format. FEach input line is divided into a series of "fields."
Each item must be left-justified in the correct field. In
practice this is quite easy, because the "space" bar has been
programmed to advance automatically to the beginning of the
next field each time it is pressed. It may also be used to
skip a field.

Special key definitions. Each line must be terminated with
a carriage return. A "null line" consists of a carriage return
only. "Backspace" may be used to correct errors within a given
field; more serious errors require use of the assembler's
editing capability. The "escape" key causes the assembler to
execute a BRK instruction, and may be used to return to the
system monitor. Users whose terminals lack any of the above
keys should refer to Section 5.1.

Hexadecimal numbers. The assembler uses hexadecimal (pase
sixteen) numbers exclusively. All addresses in this documenta- -
tion are therefore given in hexadecimal. Blanks are read as
zeroes.

Arrays. An array is any variable, e.g. a table, that
occupies more than one byte. Arrays are limited to 255 bytes.
However, two or more arrays may be treated as one large array
if an array longer than 255 bytes is needed.

Source vs. object code. "Source code" refers to the assem-
bly language module. Assembly is the process of translating
source into "object," or machine language code.

2.2 Control Mode ~

In this mode the user can define global symbols, allocate
space for tables, redefine the module pointer, and enter edit
mode to begin a new module. Control mode commands begin with
a question mark, which is also a prompt symbol for the mode.

Enter the command in the first field, followed by any
additional information required in subsequent fields. The
format for each command is given in Table 2.1 and illustrated
by example in Section 2.6.

Define global symbols. The ?ASSGN command is used to assign
addresses to global symbols. A four-digit address is required.
Additional symbols may be defined without typing "?ASSGN" again.
Just hit the space bar to skip the first field; then enter the
symbol and its address. Enter a null line (carriage return)
when all symbols have been defined.

Allocate space for tables. Use the ?TABLE command to
reserve space for tables. Enter the name of the table and its
length in bytes (two digits). The symbol is assigned the

current value of the module pointer as its address. The pointer
is then incremented by the length of the table to prevent over-
write by the next table or module. Additional tables may be
defined in a manner similar to that for ?ASSGN.

Redefine the module pointer. The ?REDEF command may be
used with caution to change the value of the module pointer.
This might be done to allow assembled modules to be stored in
memory locations not ordinarily used for program storage. For
example, assembled modules might be stored on page zero or one
if space were at a premium.

Begin new module. The ?BEGIN command causes the assembler
to enter edit mode to start a new module. The name of the
module is entered in the second field, and is added to the
symbol table as a global symbol. Its address is the current
value of the.module pointer, since that is where the module
will be stored after it is assembled. The module name is also
the label for the first line in the module, unless another line
label is supplied.

2.3 Assembly Language Format

In edit mode, the user inputs an assembly language module.
The module is edited and assembled using commands described in
Section 2.4, This process is illustrated in Section 2.6. The
prompt for edit mode is a hyphen, followed by the address where
the assembly language code for the line will be stored.

To enter a line of assembly language, hit the space bar to
skip over the first field. The contents of the other fields
are summarized in Table 2.1 and further explained below.

Label. Enter a symbol in the second field if the line will
be referenced by a branch instruction elsewhere in the module.
Otherwise hit the space bar again.

Opcode. This field must contain the mnemonic and address
mode for the desired instruction. The mnemonic is the stan-
dard three-letter MOS Technology code, e.g. LDA. Absolute,
implied, and relative addressing require no additional informa-
tion in this field. The other address modes are indicated in
the opcode field by one or two characters immediately following
the mnemonic, e.g. LDAZX. These mode codes are #,%Z,A,IX,IY,ZX,
X,Y,I, and ZY for immediate, zero page, accumulator, indexed
indirect X, indirect indexed Y, zero page X, absolute X, absolute
Y, indirect, and zero page Y addressing. Users who prefer IM
for immediate addressing need only change two bytes at 02AC
(20AC) to 49,4D.

Operand. For instructions that require no operand, hit
carriage return to end the line. Immediate addressing requires
a two-digit hexadecimal number in this field. Other address
modes use a symbol as their operand.

5

Table 2.1: Input Format for Commands and Instructions

Assign address to symbol.
Reserve space for table.
Redefine module pointer.
Begin new module.

One-byte instructions.

Immediate mode instructions.
Other two-byte instructions.

Three-byte instructions.

Define local symbol.
Assemble module.

Print lines in range.
Insert before line given.
Replace lines in range.
Append to end of module.
Save module in RAM.

Field 1 Field 2

?ASSGN symbol
?TABLE symbol
?REDEF nnnn

?BEGIN symbol

(symbol)
(symbol)
(symbol)
(symbol)
-LOCAL symbol
-ASSEM
-PRINT nnTOnn
-INSRT nn
~-INSRT nnTOnn
~INSRT FF
-STORE

() Optional.

Field 3 Field 4 Field 5

nnnn
nn

opcode
opcode
opcode
opcode

nnnn

nn Hexadecimal digits.

nn
symbol
symbol

(nn)

O0ffset. Three-byte instructions may use a two-digit hexa-
decimal number in this field to indicate an offset from the
beginning of a table or array. This value is added to the base
address of the array on assembly. The offset is optional, and
may not be used with two-byte instructions. :

2.4 Edit Mode Commands

Commands are used in edit mode to define local symbols and
to assemble, list, edit, and save a module. Edit mode commands
begin with a hyphen. Their format is given in Table 2.1 and
their use is illustrated in Section 2.6.

Define local symbols. The -LOCAL command is identical to
?ASSGN except that the symbols defined are local to the module.

Assemble. The -ASSEM command translates the module into
machine language. The assembler will respond quickly with either
the normal address prompt, indicating successful assembly, or
with one or more undefined symbols. Use the -LOCAL command to
define these symbols before assembling again. Undefined global
symbols may be temporarily defined locally to allow assembly.

List. An assembled module may be listed using the -PRINT
command. Two line numbers must be supplied. The number of a
line consists of the two least significant digits of its address
prompt. -PRINT will 1list from the first line number up to, but
not including, the second line number. The module must be
reassembled before listing each time it is modified.

Test. The assembled module may be tested by hitting "reset"
to return to the system monitor. Check the module pointer at
0040,41 to get the start address of the module. The module may
be tested using appropriate user or monitor routines., Then re-
turn to edit mode by entering the assembler at 05D6 (23D6).
Correct any errors (using the -INSRT command) and reassemble,

Insert lines. The -INSRT command can be used to insert,
delete, or replace lines. To insert one or more lines, use
-INSRT with a line number. New lines are inserted starting at
that line number. The line previously at that address, and all

lines following it, are automatically moved forward to make room
for each new line.

Delete or replace lines. If a second line number is supplled
with the -INSRT command, the assembler will delete the lines in
the specified range. Llnes following the deletion are moved back
to fill the resulting gap. New lines can then be inserted
starting at the first line number.

’——

Append new lines, After inserting or deleting lines, the N
user may wish to add lines to the end of the module. To do
this, type -INSRT FF (fast forward?). Ignore the resulting ‘
error code.

Save. An assembled module is saved using the -STORE command.
The module length is added to the module pointer to prevent over-
write by the next module. Memory space is conserved by clearing
local symbols from the symbol table. The assembler then returns
to control mode, allowing definition of new global symbols,
redefinition of the module pointer, or beginning a new module.

Tape storage. Either source or object code can be saved on
tape. Saving object code is easy since it only requires dumping
the area of memory which contains the code itself. Saving source
code requires saving both the symbol table and the module. This
is done by dumping 0A00-OC7F (2800-2A7F). 1In addition, pointers
at the following locations must be saved: 003C, 003D, 0050, 0051,
0056. It is probably easiest just to make a note of these pointer
values, using the ferm at the end of this manual.

Retrieving modules from tape requires that the assembler
he initialized by running it normally from 05B8 (23B8)., Then
hit "reset" to leave the assembler. Load the module from
tape, restore the pointer values, and enter the assembler at
05D6 (23D6). Ignore any error message on re-entry.

Note that the previous contents of the symbol table are des-
troyed by this process, so that some global symbols may have to
be redefined if the module is loaded for use with a new program. -
The assembled module will be stored according to the value of
the module pointer before the module was loaded. This may not
correspond to its previous location. ?REDEF may be used to store
the assembled location wherever desired.

Saving and retrieving assembly language modules is a tricky
process which requires experience to master. It may be easier
to debug the module thoroughly and save the object code.

2.5 Programming Restrictions

The assembler is reasonably immune to user error, other than
careless use of the ?REDEF command. Each input line is checked
for correctness; when an error is detected, the normal prompt
symbol is replaced with an error code (Table 2.2). The restric-
tions below are designed to eliminate errors at assembly time) J
(other than undefined symbols) and to minimize debugging time.

Commands. Commands may be used at any time, but the result
may be order-dependent. For example, ?TABLE will reserve space -
in a different place if used after ?REDEF. However, ?ASSGN uses
absolute addresses and is unaffected by ?REDEF.

8

Module length. Module length is limited to 128 bytes.
This guarantees that relative branches within a module will be
within range. It also requires that programs be broken up into
short modules which can be debugged more easily. A module
listing will generally fit on one page. The length of a module
corresponds to the two rightmost digits in the address prompt.
Total program length is limited by available RAM.

Relative branches. Relative branches are allowed only
within a module, for the reason given above. Line labels may
only be referenced by relative branches; this greatly simpli-
fies relocation. '

Symbols., All symbols referenced in a module must be defined
before assembly. This normally requires that subroutines be
assembled and stored before they are referenced by a program or
another subroutine. However, they could be assigned an address
using ?ASSGN or -LOCAL, and entered later. Zero page symbols
must be defined before the first line in which they are refer-
enced.

Other restrictions. Symbol table length is limited to 64
symbols. No offset is permitted with two-byte instructions.

Table 2.2: Error Codes

Command does not exist.

Module length exceeds 128 bytes.
Number of symbols eXxceeds 6Z.
Symbol already defined.

Command legal in edit mode only.

Command does not exist.

Mnemonic does not exist.

Address mode does not exist.

Illegal address mode for mnemonic.

Operand undefined; must be on page zero.
Operand not on page zero.

Offset legal for three-byte instructions only.
Relative branch illegal outside module.
Absolute addressing illegal within module.
Command legal in control mode only.
Illegal line number.

Symbol already defined.

s NV~ oMnmLESWwWYFR,O NuQwe

2.6 Sample Run

05B8 G
O

?TABLE
f>
?ASSGN
?ASSGN
?

- 0C00
1 0C00
- 0C02
- 0C03
- 0C05
- 0C06
LOOP
- 0C06
- 0C02
- 0C03
- 0C06
A22F
CA
10FD
60

- 0C06
?

?

- 0C00
~-LOCAL
- 0C00
- 0C02
- 0C05
- 0C07
- 0COA
- 0COD
- OCOE
- 0C10
- 0C11
- 0C11
AL6O
B9800C
7161
8D0217
208¢0C
88
DOF2
60

- 0C11

?

?TABLE
?ASSGN

?BEGIN

-ASSEM
-INSRT

-ASSEM
~-PRINT
DELAY
LOOP

-STORE
?REDEF
?BEGIN
-LOCAL

-ASSEM
-PRINT
WAVGEN
LOOP

-STORE

WAVE

PAD

.PERIOD

DELAY
LDX#

02T003
LOOP

00T006
LDX#
DEX
BPL
RTS

0070
WAVGEN
BASE

LOOP

00TO11
LDYZ
LDAY
ADCIY
STA
JSR
DEY
BNE
RTS

1700
0060

2F
LDX#
DEX
BPL
RTS

DEX

2F
LOOP

0061

LDYZ
LDAY
ADCIY
STA
JSR
DEY
BNE
RTS

PERIOD
WAVE
BASE
PAD
DELAY

- LOOP

10

2F

LO

PERIQD

WA
BA
PA

OoP

00
02
03
05

VE
SE
D

DELAY

LO

02

OoP

00
02

05

OA
0D
OE
10

02

(@

The array WAVE occupies the first twelve bytes of the program

stora?e area, Thus, the module DELAY will begin at address 0C8C
(2A8C).

Two global symbols were defined with a single use of the

?ASSGN command.

The assembler failed to recognize the opcode LDX# when it

was entered in the wrong field.

The module could not be assembled at first because of the

undefined symbol, LOOP. This was corrected using the -INSRT
command to replace the unlabeled line.

The first line of a listing is labeled with the name of the

module unless another label is given it.

The use of the ?REDEF command means that the module WAVGEN

will begin at 0070.

Both LOOP and BASE are local symbols. The LOOP in one

module will not be confused with that in the other, and BASE
may not be referenced in another module.

The module WAVGEN may call DELAY as a subroutine since DELAY

was entered first.

2.7 Structured Programming

The discipline of structured programming has become increa-

singly popular with the spread of such languages as Pascal.
Structured programming in assembly language is more difficult,
but offers the same advantages. Structured programs are more
likely to run correctly the first time, easier to debug, and
easier for other programmers to understand., Structured pro-
gramming in machine language requires that the programmer accept
the following restrictions on transfer of control.

Blocks. Every forward branch creates a block of one or more
lines of assembly language, between the branch instruction and
the line referenced by the branch. Execution of the block must
begin with the first line of the block; no instruction outside
the block may reference a line within the block. On completion
of a block, control must pass to the line immediately following
the block; no branch in the block may reference a line outside
the block. Blocks may contain blocks and loops.

Loops. Every backward branch creates a loop. The loop
includes the branch instruction and the line it references.
The same restrictions given for blocks also apply to loops.
Loops may contain loops and blocks.

11

Subroutines. Blocks and loops may contain subroutine calls.
Since control returns to the calling block or loop, a subroutine
may be considered as a nested block or loop.

Format. The structure of a module can be emphasized by
indenting blocks and loops. This is illustrated throughout
Section 3. Occasional NOP (EA) instructions were inserted to
delimit blocks and loops. Nested loops or blocks may require
two or three NOPs in a row, but rarely will an assembly language
program contain a four EA series.

12

,\‘ 3.

Data Tables.

0200
0210
0220

0230

0240
0250
0260
0270
0280
0290
02A0
02BO
02C0
02D0
02EQ
02F0
0300
0310
- 0320
. 0330
0340
o 0350
0360
0370
0380
0390
03AQ

LISTING

42
45
41
53
53
58
41
42
52
42
50
S5A
49
2B
22
03
08
08
2A
86
66
36
D1
AE
CE
SE
99

52
58
50
45
58
4C
4E
43
44
43
4C
58
20
26
35
02
FF
68
6A
A6

Co6

76
51
CC
EE
3E
6C

4B
44
48
43
54
44
44
53
45
43
42
5A
00
2E
32
37
FF
28
EQ
c4
E6
D6
Bl
AC
2C
7E
FF

MNETAB, MODTAB,

43
45
50
.53
58
58
43
54
43
42
56
59
27
2D
3A
Cca
FF
40
FF
Al
24
F6
11
8C
4C
DE

4C
59
50
45
41
43
4D
41
49
43
43
49
19
1C
31
02
FF
60
A2
84
B4
B6
F1
6D
20
FE

43
49
4C
44
54
50
50
41
4E
53
42
58
19
27
50
11
00
38
Co
65
94
96
91
2D
BC
BE

43
4E
41
53
58
59
45
53
43
42
56
49
1D
27
63
00
18
F8
A0
25
75
61
90
CD
FF
FF

4C
58
50
45
53
4C
4F
4C
42
45
53
59
1A
38
75
02
D8
78
FF
C5
35
21
BO
4D
7D
FF

13

etc.

44
49
4C
49
54
44
52
ac
49
51
20
20
1F
30

6E
58

69
45
D5
Cl
FO
AD
3D
FF

43
4E
50
54
59
59
4C
53
54
42
20
20
1F
2D

0C

B8
A8
29
A5

41
30
0D

79

49

4E

54
58
43
54
41
52
4D
49
20
20
19
2F

0C

88
8A
49
ES
15
01
10

8D

BD
D9

03a3
rence, X points to search parameters on page 2zero. Sets
2z if match found, returns number of matching record in X.

86
A2
86
A0
Bl
99
88
10
A6
A4
Bl
Dl
FO
A0
88
10
c8
DO
60
38
A5
E5
85
BO
cé
ca
10
60

29
00
2A
06
29
30

F8
36

35

30
32
02
FF

F5

0l

30
34
30
02
31

El

Subroutine MATCH.

00

PARAM
RECORD
BYTE

OK

INCADR

DECNUM

STXZ ADL
LDX# 00
STXZ ADH
LDY# 06
LDAIY ADL
STAY TBL
DEY
BPL PARAM
LDXZ NUM
LDYZ HBC
LDAIY TBL
CMPIY RFL
BEQ OK
LDY# FF
DEY
BPL BYTE
INY
BNE INCADR
RTS
SEC
LDAZ TBL
SBCZ LEN
STAZ TBL
BCS DECNUM
DECZ TBH
DEX
BPL RECORD
RTS

14

Search table for match to refe-

Put address of
search parameter
list in ADIL, H.
Move parameters
to workspace.

Compare X records.

First Y*1 bytes
must match.

Mismatch.

All ok?
z set.

Find base address
of next record.

Last record?
z clear.

03D5 Subroutine HEX.

to by X to 4 binary bits in A.

B5
Cc9
30
38
ES
29
60

00
40
03

07
OF

NUMER

LDAZX
CMP#
BMI
SEC
SBC#
AND##
RTS

03El1 Subroutine HX2BIN.
page zero, pointed to by X, to 8 binary bits in X.

20
oA
oA
oA
oA
85
E8
20
05
AA
60

D5 03

2D

D5 03
2D

JSR
ASLA
ASLA
ASLA
ASLA
STAZ
INX
JSR
ORAZ
TAX
RTS

JOBUF

40

NUMER

07
OF

HEX

TEMP

TEMP

15

Convert ASCII character pointed

Get character.
Number or letter?

Letter; adjust.

Convert to binary.

Convert 2 ASCII characters on

Find high byte,

and low byte.

Combine.

03F2 Subroutine BIN2HX. Convert 4 bits in A to an ASCII

character. Store in page zero, X.

c9 0Aa CMP# 10):% Number or letter?

30 03 BMI NUMER -
18 CLC Letter; adjust.

69 07 ADC# 07

18 NUMER CLC Convert to ASCII. o
69 30 ADC# 30

95 00 STAZX IOBUF Store character.

60 RTS -

O3FF Subroutine DSPHEX. Convert binary number in A to
two ASCII (hexadecimal) characters in page zero locations
X, X+1.

48 PHA Save number.

4A LSRA Find high character.)
4A LSRA

4 LSRA

4A LSRA

20 F2 03 JSR. BIN2HEX

E8 INX Find low character.
68 PLA

29 OF AND3# OF

20 F2 03 JSR BIN2HEX

60 RTS

16

@

040F Subroutine SYM.

entry X in MISCL, H.

38
86
A5
E5
85
A9
85
18
A0
26
26
88
10
38
A5
E5
85
A5
E5
85
60

0434

2D
56
2D
2B
00
2C

02
2B
2C

F9

50
2B
2B
51
2C
2C

X8

SEC
STXZ
LDAZ
SBCZ
STAZ
LDA#
STAZ
CLC
LDY#
ROLZ
ROLZ
DEY
BPL
SEC
LDAZ
SBCZ
STAZ
LDAZ
SBCZ
STAZ
RTS

Subroutine ADDRSS.

symbol X in ADL, H.

20
AQ
Bl
85
c8
Bl
85
60

OF 04
cé
2B
29

2B
2A

JSR
LDY#
LDAIY
STAZ
INY
LDAIY
STAZ
RTS

TEMP
SYMNUM
TEMP
MISCL
00
MISCH

02

MISCL
MI1ISCH

X8

SYMTBL
MISCL
MISCL
SYMTBH
MISCH
MISCH

SYM
06
MISCL

MISCL
ADH

17

Puts base address of symbol table

Find difference
between last
record and X.

Multiply by 8
bytes per record.

Subtract from
address of
last record.

Puts address corresponding to

Get base address.
Get symbol address.

Put in ADL, H.

0443 Subroutine ADDLAB.
to 6 zpage bytes containing symbol.
symbol in X.

85 29
A9 00
85 2A
18

A5 50
69 08
85 50
90 02
E6 51
A0 07
A9 FF
91 50
88

88

Bl 29
91 50
88

10 F9
A6 56
E8

86 56
60

NOADDR

XFRSYM

STAZ
LDA#
STAZ
clLC

LDAZ
ADCH#
STAZ
BCC

INCZ

LDY#
LDA#

. STALY

DEY

DEY
LDAIY
STAIY
DEY
BPL

LDXZ

INX

STXZ

RTS

0469 Subroutine NEWSYM.

symbol in X.

85 52
A2 50
20 A3
FO 05
A5 52
20 43
20 OF
“E4 56
60

03

04
04

OLD

If new,

STAZ
LDX#
JSR
BEQ
LDAZ
JSR
JSR
CPXZ
RTS

Add symbol to table.

00
ADH

SYMTBL
08
SYMTBL
NOADDR
SYMTBH
07
FF
SYMTBL

ADL

SYMTBL

XFRSYM
SYMNUM

Returns number of new

A points

ADL,H points
to symbol. -

Find new base -
address of
symbol table.

Set high address -
=FF (unassigned).

Add symbol to
symbol table.

Increment number
of symbols.

Puts base address of symbol table
record for symbol pointed to by A in MISCL, H and returns

SYMRFL
50
MATCH
OoLD
SYMRFL
ADDLAB
SYM
SYMNUM

18

adds to table and sets Z.

Set up search.
Look up symbol.

Not found; add

to symbol table.
Address in MISCL, H.
Set z if new.

o

047D Subroutine ENCODE (part 1l). Put mnemonic code in
MNE, address mode in X.

A2 42 LDX# 42 Find mnemonic.
20 A3 03 JSR MATCH

FO 03 BEQ MNEFND

A9 31 LDA# 31 "1l" Error-

60 RTS 4 not found.

86 2E MNEFND STXZ MNE Save mnemonic.
A2 49 LDX# 49

20 A3 03 JSR ~ MATCH Find address mode.
FO 03 BEQ MODF¥ND

A9 32 LDA# 32 "2'" Error-

60 RTS not found.

A5 2E MODFND LDAZ MNE Special cases:
Cc9 19 : CMP# 19

10 02 BPL NOTIMP

A2 00 LDX# 00 Implied mode.
c9 30 NOTIMP CMP# 30

30 02 . BMI NOTREL

A2 08 LDX# 08 Relative mode.
EA NOTREL NOP

04A2 Subroutine ENCODE (part 2). Check legality of
mnemonic/address mode combination.

AS5 2E LDAZ MNE Legal mnemonic
DD C2 02 CMPX MIN for address mode?
10 €3 BPL NOT2LO

A9 33 LDA# 33 "3" Too low.
60 RTS

DD CF 02 NOT2LO CMPX MAaX

30 03 BMI NOT2HI

A9 33 LDA# 33 "3" Too high.
60 RTS

18 NOT2HI CILC

7D DC 02 : ADCX BASE

85 37 STAZ OPCPTR '~ Store pointer
AA TAX to opcode

BD 05 03 LDAX OPCTAB .

C9 FF CMP# FF

DO 03 BNE OPCILGL

A9 33 LDA# 33 "3" Illegal.
60 RTS

EA OPCLGL NOP Continue.

19

04C6 Subroutine ENCODE (part 3).

required, for address modes other

address modes.

A5
C9
10
A9
60
E6
(03]
10
A2
20
86
A9
60
A2
86
C9
10
A2
20
FO
A9
60
20
FO
A9
60
86
A5
Cco
FO
A9
60
A9
60
EA

37
1D
03
2D

2F
2A
oa
15
El
38
2D

15
52
61
20
50
A3
03
34

34
03
35

38
1cC
20
03
36

2D

03

03

04

OPRRQD

NOTIMM

FOUND

OK

DONE

NOTZPG

LDAZ
CMP#
BPL
LDA#
RTS
INCZ
CMP#
BPL
LDX#
JSR
STXZ
LDA#
RTS
LDX#
STXZ
CMP#
BPL
LDX#
JSR
BEQ
LDA#
RTS
JSR
BEQ
LDA#
RTS
STXZ
LDAZ
CMP#
BEQ
LDA#
RTS
LDA#
RTS
NOP

OPCPTR

1D

OPRRQD
2D

BYTES

2A

NOTIMM
15
HX2BIN
SYMPTR
2D

15
SYMRFL
61
NOTZPG
50
MATCH
FOUND
34

ADDRSS
OK
35

SYMPTR
OFFSET
20
DONE
36

2D

20

Find operand code, if
than relative and 3-~byte

Consider opcode.

Operand required?

n_n

No; return.
At least 2 bytes.

Immediate addressing.
Find binary value

Set up operand search.

Zpage addressing?
Yes.
Look up operand.

"*4" Not found.

"5" Not zpage.

Store operand.
Check for offset.
" SPII

"6" offset illegal.

OK, return.
Continue.

0508 Subroutine ENCODE (part 4).

if required.

A2
20
FO
A9
20
86
A5
C9
10
E4
10
A9
60
A9
60
EA

50
A3
05
15
43
38
37
69
oa
3C
03
37

2D

0527
check

E4
30
20
C5
DO
A9
60
A5
A2
(03°)
FO
A2
20
86
E6
A9
60

3C
0a
34
3F
03
38

1C
00
20
05
1c
El
39
2F
2D

03

04

FOUND

OK

NOTREL

LDX#
JSR
BEQ
LDA#
JSR
STXZ
LDAZ
CMP#
BPL
CPXZ
BPL
LDA#
RTS
LDA#
RTS
NOP

50
MATCH
FOUND
15
ADDLAB
SYMPTR
OPCPTR
69
NOTREL
GLOBAL
OK
37

2D

Subroutine ENCODE (part 5).
legality and find offset.

04

03

OK

STROFS

CPXZ
BMI
JSR
CMPZ
BNE
LDA#
RTS
LDAZ
LDX#
CMP#
BEQ
LDX#
JSR
STXZ
INCZ
LDA#
RTS

GLOBAL
OK
ADDRSS
CRNTAH
OK
38

OFFSET

00

20

STROFS
1c
HX2BIN

OPRDSP

BYTES

2D

21

Look up operand; add

Look up operand.

Not found; add
to symbol table.

Relative addressing?

"7" Error-
branch not local.

For absolute addressing,

Operand must
be global or
outside block.

"8" Absolute
mode w/in block.

" SP"

Find offset.

n.v Stay in
edit mode.

0549 Subroutine CMAND.

A5
C5
FO
18
69
60
A9
85
A2
20
FO
A5
C9
10
A9
60
A9
60
A9
48
A9
48
20
6cC
60

3A
00
04

oc

00
52
50
A3 03
ocC
00
3F
03
30

41

05

75

34 04
29 00

OK

CMODE

FOUND

Look up
LDAZ MODE
CMPZ IOBUF
BEQ OK
CLC
ADC# oc
RTS
LDA# 00
STAZ SYMRFL
LDX# 50
JSR MATCH
BEQ FOUND
LDAZ IOBUF
CMP# 3F
BPL CMODE
LDA# 30
RTS
LDA# 41
RTS
LDA# 05
PHA
LDA# 75
PHA
JSR ADDRSS
JMPI ADL
RTS

22

and execute command.

Command legal
for mode?

No; illegal.
Return "9" or "K"

Look up command.

Not found.

"O" Error-
input mode.
"A" Brror-
command mode.
Set up return.

Get address.
Execute command.

0577 Subroutine FIN.
to label,

20
A4
88
B9
91
88
10
A5
co
FO
A9
20
AO
A5
91
88
A5
o1
18
A5
65
85
18
A5
65
85
10
A9

60
24

50
A9
60
A9
60

40 09

2F

37

3E -

F8
07
20
10
07
69
07
3F
2B

3E
2B

3E
2F
3E

3D
2F
3D
03
42

56
03
43

2D

if any.

00 ADDLIN

04

INCADR

OK

0K?2

JSR
LDYZ
DEY
LDAY
STAIY
DEY
BPL
LDAZ
CMP#
BEQ
LDA#
JSR
LDY#
LDAZ
STAIY
DEY
LDAZ
STAIY
CLC
LDAZ
ADCZ
STAZ
CLC
LDAZ
ADCZ
STAZ
BPL
LDA#
RTS
BITZ
BVC
LDA#
RTS
LDA#
RTS

INSERT
BYTES

OPCPTR
CRNTAL

ADDLIN

LABEL

20

INCADR
07
NEWSYM
07
CRNTAH
MISCL

CRNTAL
MISCL

CRNTAL
BYTES
CRNTAL

PRGLEN
BYTES
PRGLEN
OK

42

SYMNUM
OK2
43

2D

23

Add line to program; assign address

Adjust if inserting.

Add line
to program.

n SP "

Any label?

Yes. Add to
symbol table
if new, and
assign address.

Increment pointers.

"B" Error-
program overflow.

"C" Error-
symbol overflow.

05B8 Main program.
into source code.

D8
A2
BD
95
CA
10
A9
85
A0
A2
94
CA
10
A2
c9
10
A5
A2
20
AS
A2
20
A2
86
A9
85
20
A5
c9
DO
A5
Cc9
DO
20
c9
DO
20
A2
FO
20
18
90
EA

18
E9
3F

F8
3F
00
20
21
01

FB
3F
3F
10
3F
02

3E
04
FF
2D
3a
01
2F
5D
3a
2D
04
0l
20
ocC
7D
2D
03
77
00
03
49

B6

02

03

03

07

04

05

05

INIT

START

CLEAR

GETLIN

CMODE

NG
EXEC

DONE

CLD
LDX#
LDAZ
STAZX
DEX
BPL
LDA#
STAZ
LDY#
LDX#
STYZX
DEX
BPL
LDX#
CMP#
BPL
LDAZ
LDX#
JSR
LDAZ
LDX#
JSR
LDX#
STXZ
LDA#
STAZ
JSR
LDAZ
CMP#
BNE
LDAZ
CMP#
BNE
JSR
CMP#
BNE
JSR
LDX#
BEQ
JSR
CLC
BCC
NOP

Process command,

PRMTAB
CRNTAH

INIT

IOBUF

20

21
IOBUF1

CLEAR
3F
3F
GETLIN
CRNTAH
02
DSPHEX
CRNTAL
04
DSPHEX
2D
MODE
0l
BYTES
INPUT
MODE
2D
CMODE
IOBUF1
20
EXEC
ENCODE
2D
NG
FIN
00
DONE
CMAND

START

24

or translate input

Initialize
program parameters.

"?" Set.
command mode.
|1} SPII

Clear I/0 buffer
except error code.

"?2" Command.
Command mode?

No:; input mode.
Display address.

-" Input.
Save mode.
Initialize.

Input line.
Mode?

" __ll

Command mode?
Input mode command?
" SPII

If neither,
translate line.
" _ll

If line legal,
add to program.

If command,
execute it.

Repeat until reset.

0610
input mode.

A9
20
FO
A9
60
86
A9
85
85
AQ
91
A5
c8
91
A9
60

07
69
03
44

3C
00
3E
3D
06
2B
3F

2B
2D

? BEGIN,

04

OK

LDA#
JSR
BEQ
LDA#
RTS
STXZ
LDA#
STAZ
STAZ
LDY#
STAIY
LDAZ
INY
STAIY
LDA#
RTS

07 .
NEWSYM
OK

44

GLOBAL
00
CRNTAL
PRGLEN
06
MISCL
CRNTAH

MISCL
2D

25

Add module name to symbol table; enter

Add name to
symbol table.

"D" Error-

label in use.

Set local cutoff.
Clear pointers.

Set start address
=CRNTAL, H.

!l_ll Set
input mode.

062E

A5
Cc9
DO
A9
60
A9
20
FO
A9
60
A2
20
AQ
8A
91
A2
20
88
8A
91
a9
A2
95
ca
10
20
A5
10
EA

07
20
03
3F

07
69
03
44

OE
El
07

2B
10
El

2B
20
oc
07

FB

5D
07
CcC

? ASSGN.

04

03

03

07

START

MORE

NOTOLD

CLEAR

LDAZ
CMP#
BNE

LDA#
RTS
LDA#
JSR
BEQ
LDA#
RTS
LDX#
JSR
LDY#
TXA
STAIY
LDX#
JSR
DEY
TXA
STATY
LDA#
LDX#
STAZX
DEX
BPL
JSR
LDAZ
BPL
NOP

26

LABEL
20
MORE

3F

07

NEWSYM

NOTOLD
44

OE
HX2BIN
07

MISCL
10
HX2BIN

MISCL

20

oc
LABEL

CLEAR
INPUT
LABEL
START

Assign addresses to labels.

" SP"
Label supplied?
No; done.

Add symbol to table.

"D" Error-
label in use.
Assign address.

1] SP n
clear I/0 buffer
except prompt.

Next symbol.

0665 -~LOCAL. Add local symbols to symbol table; assign
addresses.

20 2E 06 JSR ?ASSGN Add to

C9 44 CMP# 44 symbol table
DO 03 BNE OK if new.

A9 3A LDA# 3A ":" Error-

60 ' » RTS symbol in use.
A9 2D OK LDA# 2D "-" stay in
60 RTS input mode.

0672 7?REDEF. Redefine module start address.

A2 07 LDX# 07 Find high address.
20 E1 03 . JSR HX2BIN

86 41 STXZ MDLADH Store.

A2 09 LDX# 09 Find low address.
20 E1 03 JSR HX2BIN

86 40 STXZ MDLADL Store.

A9 3F LDA# 3F "?2" stay in

60 RTS command mode.

27

0683

A0
B1
AA
BD
91
EO
10
60
c8
Bl
EO
10
91
60
86
AA
20
A5
A0
A6
EO
10
91
60
EO
10
38
E9
38
E5
91
60
18
c8
71
88
91
c8
A5

- 69

91
60

00
3E

05
57
1D
01

3E
2A
03
57

2E

34
29
01
2E
61
03
57

69
09

02

3E
57

3E
57
2A

00
57

Subroutine ASMBL.
store result at (OBJECT) .

03

04

OPREQ

NOTIMM

NOTZPG

NOTREL

LDA#
LDAIY
TAX
LDAX
STAIY
CPX#
BPL
RTS
INY
LDAIY
CPX#
BPL
STAIY
RTS
STXZ
TAX
JSR
LDAZ
LDY#
LDXZ
CPX#
BPL
STAIY
RTS
CPX#
BPL
SEC
SBC#
SEC
SBCZ
STAIY
RTS
CLC
INY
ADCIY
DEY
STAIY
INY
LDAZ
ADC#
STAIY
RTS

Translate line into machine code;

Return length-1 in Y.

00
CRNTAL

OPCTAB
OBJECT
1D
OPREQ

CRNTAL

2A

NOTIMM
OBJECT

MNE

ADDRSS

ADL

0l

MNE

61

NOTZPG
OBJECT

69
NOTREL

02

CRNTAL
OBJECT

CRNTAL
OBJECT
ADH

00
OBJECT

28

Get first byte.

Lpok up opcode.

No operand.

Address mode?
Immediate.

Get address.

Zero page.

Relative.
Compute branch.

Absolute.

Add offset.

06CB Subroutine LOCSYM.

Ab
E8
20
Cc9
DO
AO
Bl
99
88
10
86
20
A6
E4
30
60

O6EB

20
A9
C5
FO
60
A9

85

A5
85
A5
85
20
84
38
A5
65
85
90
E6
38
A5
65
85
C5
30
A9
60

3C

34
FF
11
05

2B

00

F8
2B
Al
2B
56
E3

CB
2D
00
0l

00
3E
40
5T
41
58
83
2D

57
2D
57
02
58

3E
2D
3E
3D
E5
2D

-ASSEM.

NXTSYM
04

SHOW
00

08

DEFIND

06
ALLOK
06 NEXTLN
SKIP

Displays undefined local symbols.

LDXZ GLOBAL
INX
JSR ADDRSS
CMP# FF
BNE DEFIND
LDY# 05
LDAIY MISCL
STAY IOBUF
DEY |
BPL SHOW
STXZ MISCL
JSR OUTLIN
LDXZ MISCL
CPXZ SYMNUM
BMI NXTSYM
RTS

Assemble module;
locations beginning at (MDLADL, H).

JSR LOCSYM

LDA# 2D

CMPZ IOBUF

BEQ ALLOK
RTS

LDA# 00

STAZ CRNTAL

LDAZ MDLADL

STAZ OBJECT

LDAZ MDLADH

STAZ OBJCT1
JSR ASMBL
STYZ TEMP
SEC
LDAZ . OBJECT
ADCZ TEMP
STAZ - OBJECT
BCC SKIP

INCZ OBJCT1

SEC
LDAZ CRNTAL
ADCZ TEMP
STAZ CRNTAL
CMPZ PRGLEN
BMI NEXTLN

LDA# 2D

RTS

29

For local symbols,
see if defined.

If not,
display symbol.

If more
symbols, repeat.

store result in RAM

Check for local
undefined symbols.

If any; return.

Else, assemble.
Initialize pointers.

Translate a line.
Save bytes -1.
Increment pointers.
For object code.

For source code.

Finished?
"-" Stay in
edit mode.

071F

A5
C9
DO
A9
60
A9
20
FO
A9
60
AQ
A5
91
c8
A5
91
A2
20
8A
18
65
85
90
E6
A9
A2
95
CA
10
20
A5
10
EA

07
20
03
3F

07
69
03
44

06
40
2B

41
2B
OE
El

40
40
02
41
20
ocC
07

FB
5D
07
C5

>

04

03

07

TABLE.

START

MORE

NOTOLD

NOINC

CLEAR

LDAZ

CMP#

BNE
LDA#
RTS

" LDA#

JSR
BEQ
LDA#
RTS
LDY#
LDAZ
STAIY
INY
LDAZ
STAIY
LDX#
JSR
TXA
CLC
ADCZ
STAZ
BCC
INCZ
LDA#
LDX#
STAZX
DEX
BPL
JSR
LDAZ
BPL

NOP

30

LABEL

20
MORE
3F

07

NEWSYM

NOTOLD
44

06
MDLADL
MISCL

MDLADH
MISCL
OE
HX2BIN

MDLADL
MDLADL
NOINC

MDLADH

20
ocC
LABEL

CLEAR
INPUT
LABEL
START

Allocate space for tables.

n SP 1]
Any label? -
No; done.

Add symbol to
symbol table.
"D" Error-

not new.

Assign address.

Allocate space
by incrementing
MDLADL, H.

" SP"

Clear I/0 buffer
except prompt.

Another symbol?

075D
Input

20
A2
B5
20
E8
EO
30
A2
A9
85
20
Cc9
DO
00
Cco
DO
60
C9
DO
CA
E6
A9
C9
DO
EA
20
E8
Ccé
10
A9
85
Cco
30
95
E8
cé6
18
90
EA

2F
00
00
AQ

06
F6
00
06
2D
52
1B
01

2D
08
20
0D

Subroutine INPUT.
up to 5 words.

PROMPT

START

NOTBRK

NOTCR

NOTBSP

TAB

NOTSP

DONE

Special keys:

JSR CRLF
LDX# 00
LDAZX IOBUF
JSR OUTCH
INX
CPX# 06
BMI PROMPT
LDX# 00
LDA# 06
STAZ TEMP
JSR GETCH
CMP# 1B
BNE NOTBRK
BRK
CMP# 0D
BNE NOTCR
RTS
CMP# 08
BNE NOTBSP
DEX
INCZ TEMP
LDA# 08
CMP# 20
BNE NOTSP
NOP
JSR OUTSP
INX
DECZ TEMP
BPL TAB
LDA# 06
STAZ TEMP
CMP# 20
BMI DONE
STAZX IOBUF
INX
DECZ TEMP
CLC
BCC START
NOP

31

Prompt w/ first word in IOBUF.
ESC, CR, BKSP, SP.

New line.
Prompt w/
first 6 chars.

Initialize pointer.
7 chars/word
includes space.
Input a char.

"ESC"

Break.
[14 CRII

End of line.
NBS 1"

Backspace.

n SP 1t

Next word.
Add spaces
to fill word.

If not a
control char:
Add char to
I/0 buffer.

Next character.

07A6 ~-STORE., Clear local symbols; assign address to module.
Increment MDLADL,H to prevent overwrite by next module.
Return to command mode.

A6 3C LDXZ GLOBAL Clear local

20 OF 04 JSR SYM symbols from —
86 56 _ STXZ SYMNUM symbol table.

A5 2B : LDAZ MISCL

85 50 - STAZ SYMTBL -
A5 2C LDAZ MISCH

85 51 STAZ SYMTBH

A0 07 LDY# 07 Assign address -
A5 41 LDAZ MDLADH to module.

91 2B STAIY MISCL

88 DEY -
A5 40 . LDAZ MDLADL

91 2B STAIY MISCL

18 CLC -
65 3D ADCZ PRGLEN Increment MDLADL,H

85 40 STAZ MDLADL by length of

90 02 BCC SKIP module. -
E6 41 INCZ MDLADH

A9 3F SKIP LDA% 3F "?" Return to

60 RTS command mode.

32

Table

MODLIM.

Lower opcode pointer limits for modes.

07CC (00 19 1D 2A 3F 4P 51 59 61 69 80 90 9C

07D9 Subroutine DECODE.

and OBJECT. Put line in IOBUF,

A9
85
A2
A9
95
CA
10
A6
20
A5
C5
DO
A5
C5
DO
AO
Bl
99
88
10
A2
CA
E4
10

A0
Bl
A2
20
Bl
85

01
2F
22
20
00

FB
56
34
3E
29
04
3F
2A
oc
05
2B
07

F8
0l

3C
EO

00
57
00
FF
3E
37

04

00

03

CLEAR

START

SKIP

LABL

SKIP2

LDA# ol
STAZ BYTES
LDX# 22
LDA# 20
STAZX IOBUF
DEX
BPL CLEAR
LDXZ SYMNUM
JSR ADDRSS
LDAZ CRNTAL
CMPZ ADL
BNE SKIP
LDAZ CRNTAH
CMPZ ADH
BNE SKIP2
LDY# 05
LDATY MISCL
STAY LABEL
DEY
BPL LABL
LDX# 0l
DEX
CPXZ GLOBAL
BPL START
LDY# 00
LDATY OBJECT
LDX# 00
JSR DSPHEX
LDAIY CRNTAL
STAZ OPCPTR

33

Decode line pointed to by CRNTAL
length in BYTES.

Assume 1 byte.

Clear I/O buffer.

Check for label.
Compare address
to current line.

If they match,
put label in
I/0 buffer.

End search.

Consider local
symbols only.

Get opcode.

Put opcode in
I/0 buffer.
Decode opcode.

0815

A2
c9
10
A2
DD
30
86
A2
CA
10
A5
oA
AA
BD
85
BD
85
Bl
38
A6
FD
85
oA
18
65
AA
BD
85
BD
85
BD
85
A5
Cco
10
60
E6

ocC
1D
02
0l
Ccc
04
3A
00

F4
3A

A8
11
A9
12
3E

3A
DC
2D

2D

00
OE
01
OF
02
10
37
1D
0l

2F

Subroutine DECODE (part 2).
opcode; put in I/0 buffer.

07 FNDMOD

02

02

02

02

02

02

NOPE

OPRND

LDX#
CMP#
BPL
LDX#
CMPX
BMI
STXZ
LDX#
DEX
BPL
LDAZ
ASLA
TAX
LDAX
STAZ
LDAX
STAZ
LDAIY
SEC
LDXZ
SBCX
STAZ
ASLA
CLC
ADCZ
TAX
LDAX
STAZ
LDAX
STAZ
LDAX
STAZ
LDAZ
CMP#
BPL
RTS
INCZ

ocC
1D
FNDMOD
0l
MODLIM
NOPE
MODE
00

FNDMOD
MODE

MODTAB
OPCOD3

MODTAB Ol

OPCOD4
CRNTAL

MODE
BASE
TEMP

TEMP

MNETAB
OPCODE

MNETAB 01

OPCODL1

MNETAB 02

OPCOD2
OPCPTR
1D
OPRND

BYTES

34

Decode address mode and

Find mode.
Any operand?

If not, only check
implied and accum.

In range

for mode?

Yes; save mode.
End search.

Put mode in
I/0 buffer.

Find mnemonic.

Mnemonic number.
Multiply by 3.

Get ASCII.
Put mnemonic in
I/0 buffer.

Operand needed?

No; finished.

At least 2 bytes.

O85E Subroutine DECODE (part 3).
offset, if any.

A0 01
BL 57

A2 02

20 FF 03

A5 37.

C9 2Aa

10 08

Bl 3E

A2 15

20 FF 03

60

Bl 3E NOTIMM
AA

20 OF 04

A0 05

Bl 2B SHOWOP
99 15 00

88

10 F8

A5 37

co 69

10 01

60

E6 2F ABS
A0 02

Bl 57

A2 04

20 FF 03

Bl 3E

FO 05

A2 1C

20 FF 03

60 DONE

LDY#
LDAIY
LDX#
JSR
LDAZ
CMP#
BPL
LDAIY
LDX#
JSR
RTS
LDAIY
TAX
JSR
LDY#
LDAIY
STAY
DEY
BPL
LDAZ
CMP#
BPL
RTS
INCZ
LDY#
LDAIY
LDX#
JSR
LDAIY
BEQ
LDX#
JSR
RTS

08A1 Subroutine OUTLIN.

20 2F 1E

A2 00

B5 00 NXTCHR
20 AQ 1E

E8

EO 23

30 F6

60

JSR
LDX#
LDAZX
JSR
INX
CPX#
BMI
RTS

0l
OBJECT
02
DSPHEX
OPCPTR
2A
NOTIMM
CRNTAL
15
DSPHEX

CRNTAL

SYM

05
MISCL
OPRAND

SHOWOP
OPCPTR
69

ABS

BYTES
02
OBJECT
04
DSPHEX
CRNTAL
DONE
1C
DSPHEX

CRLF

00
IOBUF
OUTCH

23
NXTCHR

35

Decode operands and

Machine code
for operand in
I/0 buffer.
Immediate mode?
Yes; put hex
number in

I/0 buffer.

No; look up
operand.

Put operand
in IOBUF.

3-byte instruction.
No; done
Yes.

Add code to
I/0 buffer.

Offset?

Show offset.

Output line from IORBUF.

New line.

Output one
character at
a time,
until done.

08B1 Subroutine PRNTCK. Check that FIRST and LAST are legal

1ine numbers. Print lines in range if PRNTOK=1. .
A9 00 LDA# 00 Initialize.

85 3E STALZ CRNTAL

AS 40 LDAZ MDLADL

85 57 STAZ OBJECT

A5 41 LDAZ MDLADH : —
85 58 STAZ OBJCT1

A2 07 LDX# 07 Decode range.

20 E1 03 JSR HX2BIN

86 59 STXZ FIRST

A2 0B LDX# 0B

20 E1 03 JSR HX2BIN

86 SA STXZ LAST

A9 02 LDA# 02 Initialize flag

85 39 STAZ WRONG for mismatch.

20 D9 07 NXTLIN JSR DECODE Decode line. -
A5 3E LDAZ CRNTAL

C5 59 CMPZ FIRST Decrement WRONG

DO 02 BNE SKIP each time a

C6 39 DECZ WRONG match is found.

C5 5A SKIP CMPZ LAST

DO 02 BNE SKIP2

C6 39 DECZ WRONG -
C5 59 SKIP2 CMPZ FIRST In range

30 12 BMI LOW for print?

C5 5A CMPZ LAST

10 0D BPL HIGH

24 38 BITZ PRNTOK Yes, but

30 08 BMI NOPRNT print wanted? B
A2 1F LDX# 1F Yes; add

20 FF 03 JSR DSPHEX line number.

20 Al 08 JSR OUTLIN Print line.

EA NOPRNT NOP -
EA HIGH NOP

18 LOw CLC Update pointers.

A5 57 LDAZ OBJECT —
65 2F ADCZ BYTES

85 57 STAZ OBJECT

90 02 BCC NOINC

E6 58 INCZ OBJCT1 B
18 NOINC CLC

AS 3E LDAZ CRNTAL

65 2F ADCZ BYTES ' , -
85 3E STAZ CRNTAL :

C5 3D CMPZ PRGLEN Last line?

30 C3 BMI NXTLIN If not, repeat. -
60 RTS

36

090D

A9
85
20
A9
60

01l
38
Bl
2D

0917
labels.

A6
20
C5
DO
A5
C5
30
Ad
c4
10
A9
A0
91
18
65
A0
91
EA
CA
E4
10
60

56
34
3F
1A
29
3E
13
29
5A
06
FE
07
2B

2F
06
2B

3C
DA

Set print flag.

Run print routine.

"~-" Stay in

-PRINT. Output lines in specified range.
LDA# 0l
STAZ PRNTOK
08 JSR PRNTCK
LDA# 2D
RTS

Subroutine FIXSYM,

04

edit mode.

Adds BYTES to addresses of line
Used by -INSRT and subroutine INSERT.

LDXZ SYMNUM For local symbols,
START JSR ADDRSS find address.
CMPZ CRNTAH Line label?
BNE NOTLAB
LDAZ ADL Yes, but in
CMPZ CRNTAL move zone?
BMI NOREV
LDYZ ADL Yes.
CPYZ LAST Line deleted?
BPL NEWADR
LDA# FE Yes.
LDY# 07 Delete symbol.
STAIY MISCL
NEWADR CLC Fix address
ADCZ BYTES
LDY# 06
STAIY MISCL
NOREV NOP
NOTLAB DEX More local
CPXZ GLOBAL: symbols?
BPL START

RTS

37

0940 Subroutine INSERT.

current line.

A5
C5
DO
60
85
20
18
A5
65
85
A5
85
A5
38
E5
A8
Bl
91
88
10
60

3E
3D
01

5A
17

3E
2F
29
3F
2A
3D

3E

3E
29

F9

09

INS

MOVE

LDAZ
CMPZ
BNE
RTS
STAZ
JSR
CLC
LDAZ
ADCZ
STAZ
LDAZ
STAZ
LDAZ
SEC
SBCZ
TAY

LDALIY
STAIY
DEY
BPL

RTS

Adjust symbol table.

CRNTAL
PRGLEN
INS

LAST
FIXSYM

CRNTAL
BYTES
ADL
CRNTAH
ADH
PRGLEN

CRNTAL

CRNTAL

ADL

MOVE

38

Open gap in program to insert

Inserting line?

Nope.

Fix symbols.

Set up offset
pointer for move.

Move lines to
open gap.

0965 -INSRT. Check supplied line numbers for legality.
Set program pointer to first line number; delete to second.

A9 FF LDA# FF - Legal 1line?
85 38 STAZ PRNTOK

20 B1 08 o JSR PRNTCK

C5 5A CMPZ LAST Last+1 is

DO 02. BNE NOTLST legal line

C6 39 : DECZ WRONG number.

A5 39 NOTLST LDAZ WRONG

FO 03 BEQ 0K

A9 25 LDA# 25 "$" Error-

60 RTS illegal address.
A5 59 0K LDAZ FIRST

85 3E STAZ CRNTAL

A6 5A LDXZ LAST Deletion needed?
FO 26] BEQ DONE

38 SEC Fix addresses
E5 5A SBCZ LAST for labels.
85 2F STAZ BYTES

20 17 09 JSR FIXSYM

A5 3F LDAZ CRNTAH Set pointer
85 5B STAZ LAST1 for move.

A5 3D LDAZ PRGLEN Find bytes

38 SEC to move.

E5 3E SBCZ CRNTAL

85 2D STAZ TEMP _

A5 3D LDAZ PRGLEN Correct length
18 CLC of program.
65 2F ADCZ BYTES

85 3D STAZ PRGLEN

A0 00 LDY# 00 Move lines to
Bl 5A MOVE LDAIY LAST close gap.

91 3E STAIY CRNTAL

Cc8 INY

C4 2D CPYZ TEMP

30 F7 BMI MOVE

EA NOP

A9 2D DONE LDA# 2D - Stay in
60 RTS edit mode.

09AA Move first nine entries in symbol table to RAM.
Entry point for assembler in ROM.

A2 47 ‘ LDX# 47

BD B8 09 MOVSYM LDAX ROM

9D B8 09 STAX RAM

CA DEX

10 E7 BPL MOVSYM
AC B8 05 JMP MAIN

39

Table COMAND. First nine entries in symbol table; commands.

: 09B8 3F 41 53 53 47 4E 2E 06
09CO0 3F 42 45 47 49 4E 10 06 09C8 2D 4C 4F 43 41 4C 65 06
09D0 3F 52 45 44 45 46 72 06 09D8 2D 41 53 53 45 4D EB 06
09E0 3F 54 41 42 4C 45 1F 07 O09E8 2D 53 54 4F 52 45 A6 07
09F0 2D 50 52 49 4E 54 0D 09 O09F8 2D 49 4E 53 52 54 65 09

40

4. THEORY OF OPERATION
4.1 Encoding Scheme

The assembler owes its speed and memory efficiency to the
encoding scheme by which each line of assembly language is
stored. As each line is entered, it is translated into an
encoded form which is the same length as its machine language
equivalent. This is done by Subroutine ENCODE. The result may
be seen at the address given in the prompt for each line.

Opcode. The first byte in the coded assembly language for
a line is a pointer to the opcode for the instruction. The
opcodes are found in OPCTAB, but in an unusual order. They are
grouped by address mode, with the address modes in the order
given in Section 2.3. This arrangement simplifies coding, since
the modes are arranged in order of number of bytes required.
The mnemonics have also been rearranged, to eliminate gaps in
the table.

Operand. For two- and three-byte instructions, the second
byte in the assembly code is for the operand. This is just a
hexadecimal number for immediate addressing. For the other
address modes, it is the number of the symbol table entry for
the operand. Each symbol table entry is eight bytes--six ASCII
characters followed by the low and high address for the symbol.
Hexadecimal FF for the high address indicates that no address
has yet been assigned to the symbol.

Offset. For three-byte instructions, the third byte in the
assembly code is the offset described in Section 2.3. This will
be zero unless an offset is supplied.

Listing. When the -PRINT command is used, the encoded as-
sembly language must be translated back into strings of ASCII
characters. This is done by Subroutine DECODE.

Assembly. With this encoding scheme, final assembly is re-
duced to one or two table look-ups for each line. Most of the
work is done during the carriage return time as each line is
entered.

L,2 Useful Subroutines

Some of the subroutines in the assembler may be of use in
user programs., HX2BIN and DSPHEX are examples. = Subroutine
MATCH is a powerful string-search routine. It requires the
following information from the calling routine: base address
of the last record in the table to be searched, start address
of the string to be compared, record length for the table,
number of the highest byte which must match (the record may
contain additional information), and the number of the last
record in the table. This information is passed in the form

41

of a single byte in the X register, which points to a page-zero

array of these parameters. These correspond to the symbols

TBL through NUM in Table 4.2. X is also used to return the |

number of the record which matches the supplied string. The - !

zero flag is cleared if no match is found. |
|

Table 4.1: Important Arrays and Pointers.

Array Assembly Assembled Symbol -
language program table
’ module
Address 0CO0-0C7F 0C80- 27 09B8-0BB7
range (2A00-2A7F) (2480~ 2°?) (27B8-29B7)
Pointer CRNTAL,H MDLADL,H SYMTBL,H
003E,Q003F 0040 ,0041 0050,0051
Points to current first line latest -
line of module symbol
Initial 0CO00 0Cc80 09F8* s
value (2A00) (2480) (27F8)
Initialized 02E9** O2EA,02EB 02FA,02FB
from (20E9) (20EA, 20EB) (20FA, 20FB)

?? Limited by available RAM.

() Address for version beginning at 2000.

* First part of symbol table reserved by assembler.
*¥# High order address; low order initialized to zero.

42

Table 4.2:

IOBUF
LABEL
OPCODE
OPRAND
USER
ADL
ADH
MISCL
MISCH
TEMP
MNE
BYTES
TBL
TBH
RFL
RFH
LEN
HBC
NUM
OPCPTR
PRNTOK
WRONG
MODE
SAVX
GLOBAL
PRGLEN
CRNTAL
CRNTAH
MDLADL
MDLADH
MNETBL
MODTBL
SYMTBL
SYMTBH
SYMRFL
SYMRFH
SYMNUM

OBJECT

O0BJCT1
FIRST
LAST
LAST1

0000
0007
O00E
0015
0023
0029
002A
002B
002C
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E
003F
0040
0041
0042
0049
0050
0051
0052
0053
0056
0057
0058
0059
005A
005B

Global Symbols on Page Zero

1/0 buffer; prompt or command field.

I/0 buffer; label field.

I/0 buffer; opcode field.

I/0 buffer; operand field.

Six bytes available for use by user commands.
Low address pointer for various subroutines.
High address pointer.

Miscellanecus uses.

Ditto.

Various temporary uses.

Mnemonic code.

Lengths of lines, etc.

Low address pointer for table; used by MATCH.
High address pointer (Subroutine MATCH).

‘Low address pointer for string to be matched.

High address pointer (MATCH).

Length of each record in table (MATCH).

Number of highest byte in record which must match.
Number of highest record in table (MATCH). .
Pointer to opcode in OPCTAB.

Flag to enable printing by Subroutine PRNTCK.
Flag for illegal line numbers (PRNTCK).

Code for address mode.

Used to preserve X register.

Number of last global symbol.

Length of source code.

Low address pointer to current source code line.
High address pointer.

Module pointer, low address.

Module pointer, high address.

Parameters for MNETAB (see TBL to NUM above).
Parameters for MODTAB.

Low address pointer to last entry in symbol table.
High address pointer.

Low address pointer for symbol to be compared.
High address pointer.

Number of last symbol.

Low address pointer to object code.

High address pointer.

First line in range for print (PRNTCK).

First line after print range.

High order address; same as CRNTAH.

43

Table 4.3: Other Global Symbols

*MNETAB 0200 Three-character ASCII mnemonics for instructions.

*MODTAB 02A8 Two-character ASCII mode codes.

*MIN 02C2 Minimum legal value for MNE for each mode.

*¥MAX 02CF Lowest illegal value of MNE for each mode. -
*BASE 02DC Base value for mode added to MNE to get OPCPTR.

*PRMTAB 02E9 Initialization values for CRNTAH through SYMNUM. .
*¥USRPRM 0301 Four bytes available for user parameters. ~
#*OPCTAB 0305 Machine language opcodes pointed to by OPCPTR.
MATCH O03A3 Search table for match to reference.

HEX 03D5 ASCII character to four bits.

HXZBIN O3E1 Two ASCII characters on page zero to eight bits.
BINZHX O3F2 Four bits to ASCII character on page zero.
DSPHEX O3FF Eight bits to two ASCII characters, page zero.
SYM OLOF Address of symbol table entry X in MISCL, H. -
ADDRSS 0434 Address for symbol X in ADL, H.

ADDLAB O443 Add symbol to table; return number in X.

NEWSYM 0469 Add symbol if new; call SYM. —
ENCODE 047D Encode assembly language line; update symbols.
CMAND 0549 Took up and transfer control to command.

FIN 0577 Add encoded line to program.

MAIN 05B8 Main program; do command or encode line.

?BEGIN 0610 Add name to symbols; enter edit mode.

?ASSGN 062E Assign addresses to global symbols.

-LOCAL 0665 Assign addresses to local symbols,

?REDEF 0672 Redefine module pointer. ,

ASMBL 0683 Translate line into machine code.

LOCSYM 06CB Display undefined symbols.

-ASSEM O6EB Assemble module; store at MDL,H.

?TABLE 071F Reserve space for arrays.

INPUT 075D Prompt with IOBUF; accept input line.

-STORE 07A6 Save module; clear local symbols; end edit mode.
*MODLIM 07CC Lower OPCPTR limit for each address mode.

DECODE 07D9 Convert source code to ASCII line.

OUTLIN 08A1 Output line from IOBUF as ASCIIT. —
PRNTCK 08B1 Check line numbers; print lines if enabled.
-PRINT 090D Output lines in range.

FIXSYM 0917 Revise addresses of symbols in move range.
INSERT 0940 Open gap in source code for insert; fix symbols.
-INSRT 0965 Insert and/or delete lines.

* Table.

44 —_

WAS
SSHaav
IWASXTd
NITLNO
XHeNIg
XdHdSA
WAS
XHSNIg
XdHdSA
WAS
SSYaav
clafereciel
XdH
NIdZXH
ADINYL
LUSNI-

NITLNO
XHeNId
XHHdSd
WAS
XHeNId
XHHJSA
NAS
SSYaav
daoddd
- XHH
NIdZXH
JADINYd
ONTHd -

NXS
HYOLS-

WAS
SSHAaY
TANSY
NITIOO
WXS
SSYaav
WASO0T
WISSV-

XdH
NIgcXH
CIC(OICR. 0

INANT
XEH
NIGZXH
WXS
gyIaay
HOLVI
WASMEN
NDSSVS
TYDOT-

INdNT
XHH
NISZXH
WXS
avIaaqy
HOLVI
WASMIN
NDSSV¢

NAS
gviaav
HOLVIN
IWASMEN
NIDddé

saTnpo Jo Ayoaeae1H ‘i4°4 9TABIL

LANT
XHH

NIdZXH
NAS
gviagy
HOLVI

WASMHIN

HTdVLé

Amvcmesoov
XS
S8Ydav
HOLVIN
ANVIND
- NWAS
qaviI1aav
HOLVI
WASMIN
WNAS
SSYaav
NASXTd
LIISNTI
NId
aviaav
WAS
SSYaav
XdH
NIdZXH
HOLVI
HAODNH
LOANT
XHZNId
XHHJASd
WVYD0dd NIV

45

5. MODIFICATION

Some users may wish to modify the assembler to expand its
capabilities, or for use on another system. Sections 3 and 4 —
should prove particularly useful to these users. Some comments
on specific modifications are given below. To use the assembler
on another 650X system, different 1/0 routines would probably
be required. The assembler might also have to be relocated.

5,1 Changing Special Key Definitions

Some terminals lack "escape" or "backspace" keys. Another
key may be used by storing its ASCII code at 0776 (2576) for
escape, or 0780 (2580) for backspace. Refer to Subroutine INPUT -
in Section 3.

5.2 Moving Tables

The ?REDEF command temporarily changes the memory location
for storage of assembled modules. The assembler can also be
permanently modified to store the assembled modules, assembly -
language, or symbols at a different location.

Initialization value. The location of each array is deter-
mined by the initial value of its corresponding pointer. The
last line in Table 4.1 gives the source of this initialization
value for each array. By changing these values, the array(s) _
can be initialized to a different location. The current line -
pointer low order address is always initialized to zero; only
the high address can be changed in this way. Both low (first
byte) and high (second byte) order addresses can be changed for
the other pointers.

Symbol table. The first nine entries (72 bytes) in the
symbol table are essential to the assembler, because they are
symbols and addresses for the assembler commands. They must be
moved if the initialization value for the symbol table is changed.
Note that the initialization value points to the ninth symbol,
not the first,

5.3 Adding Custom Commands
User commands may be added in the form of subroutines.

Prompt symbols. Command subroutines must return the appro-
priate prompt symbol in the accumulator: 3F (?) for control
mode or 2D (-) for edit mode. Or, an error code may be returned;
these must be greater than 3F for control mode, and less than

3F for edit mode. Error codes should be printing ASCII charac-
ters.

Adding to symbol table. The ASCII code for the command,
beginning with the correct mode prompt symbol, should be entered

46

in the first six bytes available in the symbol table. This
would start at 0A0O (2800) for the first user command. The
subroutine address should be stored in the next two bytes, low
order first. The initialization value at 02FA, 02FB (20FA,20FB)
must be incremented by eight. (See Section 5.2) The initiali-
zation value for the top symbol number at 0300 (2100) must be
incremented by one.

5.4 Relocation

The assembler may be relocated using a relocation routine
such as that in The First Book of KIM. The 0200 version of the
assembler starts at address 0200 and ends at 09FF. It contains
blocks of data at 0200-03A2, 07CC-07D8, and 09B8-09FF inclusive.
The assembler should be relocated an even multiple of 256 bytes,
so that it begins at a page boundary, e.g. 0200, 2000, 0400,
etc.

The relocation routine mentioned above will correct ad-
dresses for subroutine calls, but table references and pointers
must be corrected by hand. Since the assembler is relocated an
even number of pages, only the high order address must be cor-
rected. For example, to relocate the 0200 version to start at
0800, add six to the number currently at each of the addresses
below.

Pointers. Addresses 02ED, O02F4, and 02FB contain initial-
ization values for pointers, as do addresses 02E9 and 02EB.

Command return. The value at address 056B is pushed on the
stack as the high order address for return from a command.

Data. Addresses O4A6, OLAE, O4B7, O4BD, 05BD, 068A, 083E,
082F, 0834, 081iF, 0848, 084D, and 0852 contain high order ad-
dresses for table references.

Symbol table. Each of the first nine entries in the symbol
table contains six ASCII characters, corresponding to a command,
followed by the low and high order address for the command sub-
routines. The high addresses, at 09BF to O09FF must be corrected.

5.5 I/0 Requirements

The assembler uses standard I/0 routines in the KIM moni-
tor. Functionally equivalent user routines may be substituted
for use with another I/0 device or 6502 system. Table 5.1
gives a brief description of each of these routines, together
with the addresses of lines in the assembler which call each
subroutine.

47

Table 5.1: I/0 Routines

KIM Routine Function
CRLF Carriage return,
1E2F line feed
OUTCH Output ASCII from A.
1EAOQ Preserve X.
GETCH Input ASCII to A.
1E5A Preserve X.
OUTSP Output one space.
1E9E .

+5V

Assembler References

075D (255D)
08A1 (26A1)

0764 (2564)
08A8 (26A8)

0772 (2572)

078D (258D)

10K

PA7 - 4

PAS
PA4

PA3

PA2

PAl

PA0 ————

—_—
—
>

INH
1/0

— o

7 —
° tr 63-k
- ey

5 unencoded
4 > keyboard
3
2 |— 8x8 matrix

00=short
1= 3F=shift
0 >

Figure A.1l: Keyboard Interface

48

APPENDIX A: AN INEXPENSIVE I/0 SYSTEM

Many 6502 users, myself included, do not have a computer
terminal. I have developed a very inexpensive "terminal sub-
stitute."” I use a $30 unencoded keyboard for input, and dis-
play a 64-character ASCII subset on the KIM-1 display.

The keyboard is scanned using software, which allows keys
and combinations of keys to be defined arbitrarily. For example,
multiple key depressions could be used for playing chords in
music synthesis applications. The I/0 software given here simu-
lates a simple ASCII keyboard with "shift" but without "control”
or "repeat." The required software decreases the space avail-
able for program storage. Using the KIM-1 display for output
of ASCII characters can be frustrating, but it is a big improve-
ment over no ASCII output at all. The keyboard interface might
also be of interest to those planning to add one of Lancaster's
"cheap video" displays.

Keyboard interface. Figure A.1 is a schematic for the key-
board interface. The unencoded keyboard must be wired as a
matrix of eight rows and eight columns. One CMOS 4051 is used
as a multiplexer and the other as a demultiplexer. Output lines
PAO to PA5 select the row and column of interest. PA7 goes low
if the corresponding key is depressed.

The "shift" key must be connected to channel 7 of each 4051.
Channel 0 of one 4051 must be shorted to channel 0 of the other.
Other row and column assignments are arbitrary, since assign-
ment of ASCII codes is done in software.

The keyboard, 4051 chips, and wire-wrap sockets are avail-
able from Jameco Electronics, 1021 Howard Ave., San Carlos, CA
34070 for under $35. They also sell a wire-wrapping kit for

13.

Testing the interface. Load and run the relocatable test
routine below. With no key depressed, the data display should
read 00. Pressing the "shift" key should cause 3F to be dis-
played. If not, the keyboard interface is connected incorrectly.
When another key is pressed, the hexadecimal code for its row
and column will be displayed. Record this key number for each
key. Then make a table giving the ASCII equivalent for each key
number from 00 to 3F. Key numbers 00 and 3F correspond to "end
of scan" and "shift," respectively, so the value entered for
them will be ignored. This 64 byte table should be loaded at
address OE80. There may be more than one key for a given ASCII
code, and not all ASCII codes will be used.

I/0 routines. Next, load the rest of the I/0 software,
beginning with Table SEGTAB and ending with Subroutine CRLF.
SEGTAB gives the pattern of 1it segments to display a 64 char-
acter ASCITI subset (ASCII 20 through 5F) on the KIM-1 display.

49

Some characters will look strange at first, but recognition
becomes easy with very little practice. The subroutines

GETCH, OUTCH, OUTSP, and CRLF are functionally equivalent to
the KIM monitor routines of the same names. Their addresses
must be substituted in the assembler I/0 subroutine calls as

explained in Section 5.5. These routines could also be used
in other terminal-based programs.

Listing A. Test program for Qwerty keyboard. Displays
hexadecimal code of active key.

A9 7F " LDA# 7F Define I/0.

8D 01 17 STA PADD

A9 00 LDA# 00 Initialize pointer
85 FA STAZ POINTL for display routine.
A9 17 LDA# 17

85 FB STAZ POINTH

A9 40 START LDA# 40 Scan 63 keys.

8D 00 17 STA PAD

CE 00 17 SCANKB DEC PAD Find active key.
AD 00 17 LDA PAD

30 F8 BMI SCANKB

20 19 1F JSR SCAND Display key.

18 CLC

90 ED BCC START Repeat for new key.
EA NOP '

50

OECO
64-character ASCII subset.

Table SEGTAB.

00 0A 22 1B 36 24 5F 02 39
3F 06 5B 4F 66 6D 7D 07 7F
7B 77 7C 58 S5E 79 71 3D 76
73 67 50 2D 78 1C 6A 3E 14

OFO00
readout for about 3 msec.

A9
8D
A9
8D
A2
CE
CE
BS
8D
AO
88
10
A9
8D
1671
10
60

7F
41
15
42
05
42
42
23
40
64

FD
00
40

E8

17

17

17
17

17

17

CHAR

WAIT

Subroutine DSPLAY.

LDA#
STA
LDA#
STA
LDX#
DEC
DEC
LDAZX
STA
LDY#
DEY
BPL
LDA#
STA
DEX
BPL
RTS

D

51

Seven~-segment code to display

Modify as desired.

OF 21 18
6F 41 45
04 1E 70
6E 49 39

isplay 6

7F

PCDD

15

PDD

05
PDD
PDD
DSPBUF
PCD
64

WAIT
00
PCD

CHAR

0C 40 08 52
60 48 42 53
38 37 54 5C
44 OF 77 61

characters on KIM

Define I/0.
Initialize char.

Display 6 chars.
Select next char.

Get segment code.
Turn segments on.
Wait 500 msec.

Turn segments off.

Another char?

OF25 Subroutine GETKEY. Scan kybd; return ASCII in A,
key in Y.

A2 3F LDX# 3F Define I/0. _
8E 01 17 STX PADD

8E 00 17 STX PAD

CE 00 17 NXTKEY DEC PAD Scan 2 keys. _
AD 00 17 LDA PAD for active key.

30 F8 BMI NXTKEY

29 3¢ AND# 3F Mask input bit.

A8 TAY Return if no key.

DO 01 BNE ANYKEY

60 ‘RTS

B9 80 OE ANYKEY LDAY KEYTAB Get ASCII.

8E 00 17 STX PAD Check shift key.

2C 00 17 " BIT PAD

10 01 BPL SHFTKY

60 RTS No shift; return.

Cco 21 SHFTKY CMP# 21 shift legal?

10 01 BPL NOT2L0O

60 RTS

C9 40 NOT2LO CMP# 40 ~
30 01 BMI NOT2HI

60 RTS

49 10 NOT2HI EOR# 10 Find shift char. -
60 RTS

52

OF54 Subroutine ADDCH.

display from right.

A2 00
B4 24
94 23
E8

EO 05
30 F7
E9 20
AA

BD CO OE
85 28
60

0r68 Subroutine GETCH.
Return ASCII in A.

required.

86 3B

20 00 OF
20 25 OF
DO F8

EA

20 00 OF
20 25 OF
FC F8

c9 08

DO 10

A2 04

B4 23

94 24
167:1

10 F9

A0 00

84 23

A6 3B

60

48

20 54 OF
A6 3B

68

60

LDX#
LEFT LDYZX
STYZX
INX
CPX3
BMI
SBC#
TAX
LDAX
STAZ
RTS

X is preserved.

00
DSPBFI
DSPBUF

05
LEFT
20

SEGTAB
DSPBF5

STXZ SAVX
OLD JSR DSPLAY
JSR GETKEY
BNE OLD
NOP
NONE JSR DSPLAY
JSR GETKEY
BEQ NONE
CMP# 08
BNE NOTBSP
LDX# 04
RIGHT LDYZX DSPBUF
STYZX DSPBF1I
DEX
BPL RIGHT
LDY# 00
STYZ DSPBUF
LDXZ SAVX
RTS
NOTBSP PHA
' JSR ADDCH
LDXZ SAVX
PLA
RTS

53

shift ASCII character in A into

Shift display
to left.

Find segment
code.

Add at right.

Get character from keyboard.
Add to display or backspace as

Save X,
wait for release
of old key.

Wait for new
key depressed.
Backspace?

Yes. Shift
display right.

Add blank
at left.
Restore X.

Else, add char
to display.

OF97 sSubroutine OUTCH. Add ASCII character in A to dis-
play. Display for about 0.2 sec. Preserve X.

86 3B STXZ SAVX Save X.

20 54 OF JSR ADDCH Add char. .
A9 40 LDA# 40 Wait 0.2 sec

85 5C STAZ TIME before returning.

20 00 OF SHOW JSR DSPLAY ' .
Cé6 5C DECZ TIME

10 F9 BPL SHOW

A6 3B LDXZ SAVX _ Restore X.

60 RTS

OFAA Subroutine OUTSP. Output one space.

A9 20 LDA# 20

20 97 OF JSR OUTCH
60 RTS

OFBO Subroutine CRLF. Clear display. —

A9 00 LDA# 00

A2 05 LDX# 05 -
95 23 CLEAR STAZX DSPBUF

167 DEX

10 FB BPL CLEAR

60 RTS

54

APPENDIX B: ANSWERS TO USER QUESTIONS
Q. Can the assembler be stored in read only memory?

A, Yes; it will just fit in a 2K ROM. Presumably it will have
to be relocated, following the instructions in Section 5.4. 1In
addition, the assembler must be entered at the relocated equiva-
lent of 09AA, This routine, which is unused in the RAM version
of the assembler, transfers the first nine entries in the symbol
table from ROM to RAM. These symbols correspond to commands and
are essential to the assembler. The correct source and destina-
tion addresses must be substituted in this initialization routine.
Permission to reproduce the assembler in ROM may be obtained from
the author.

Q. If I have enough memory, can I expand the symbol table?

A. Yes. The standard version of the assembler allows 64 symbols,
including nine for assembler commands. Space is available for
nine additional symbols if overflow error detection is defeated
by setting 05B4 (23B4) = EA. The assembler can also be modified
to give an overflow error message when the number of symbols
exceeds 128, by setting 05B0 (23B0) = 10. Expanding the symbol
table to 128 entries requires moving the module and assembled
program storage areas. See Section 5.2. Actually, quite lengthy
programs can be assembled within the 1limit of 55 user symbols,
since local symbols are cleared each time a module is stored.

Q. My video terminal only has 32 characters per line, so your
print routine runs over by one character. Any advice?

A. Make the following changes at the addresses indicated:
0870(2670)=14, 0880(2680)=14, 089C(269cg=1B 08AD(26AD)=20,
08ED=1E, Input lines may still exceed 32 characters.

Q. Can the assembler be used with the SYM microcomputer?

A. Easily. The I/0 routine addresses must be changed as ex-
plained in Section 5.5. The SYM monitor addresses are 834D
(CRLF), 8A47(0UTCH), BA1B(GETCH), and 8342(0UTSP).

Q. How about a command to give the starting address of the
module without having to check 0040, 00417

A. This is just one example of a number of commands that could
easily be implemented by users who don't insist on fitting the
assembler in a 2K ROM, It is also possible to add features by
sacrificing existing commands. For example, some users may
rarely use ?REDEF., Others may use ?7ASSGN and ?REDEF to name
and reserve space for tables. Either command could be replaced
by a user-written command. Reviewers disagreed on some of the
most desired features in a 2K assembler. The assembler is
sufficiently easy to modify that the final choice can be left
to the user.

55

A541
AZ282
28FFa3
A540
RZ284
20FFB3
2BA168
Az21A -
B53C
9DEGVB
ch
igrs
4CBB1C
AZ1A
BDEOOGB
953C
Cnh
18F8
4CDBYs

--TEST

SAVE

ENTER
RESTR

LDAZ
LDX#
JSR
LDAZ
LDX#
JSR
JSR
LDX#
LDAZX
STAX
DEX
BPL
JMP
LDX 4
LDAX
STAZX
DEX
BPL
JMP

MBLADH
B2
DSPHEX
MDLADL
a4
DSPHEX
OUTLIN
1A
GLOBAL
COPY

SAVE
MONITR
1R
CoPY
GLOBRL

RESTR
WARM

56

8a
8z
B4
Bs
vB
5]
11
13
15
i8
19
1B
1E
28
23
25
26
28

ZK SYMBOLIC ASSEMBLER: REVISIONS

Here are the corrections for all bugs found so far, along with some
optional modifications to the 2KSA.

BACKSPACE BUG

'ho “hackspuce”™ key does not deleta the last character, but only moves a

pointer to allow typing over it. It is not possible to blenk out a
character using the “"space” key, because that is used to advance it to the
next field. One solution is to use "tab™ to advance to the next field,

freeing “"space” for use as a blanking character. (Thanks to Nelson Eduwards
for finding this bug.)

ADDRESS ASSIGNMENT PROBLEMS

The ZKSA is designed to prevent accidental re-assignment of an address
to a symbol. Early versions were a bit overzealous in this area, and
should be fixed by loading at B478: 34, 84, C9, FF. The re-assignment
check can also be defeated completely, if desired, by loading at B47A: A9,
98. Just don’t forget and use the same symbol twice.

EASIER RELOCATION

Relocation of moadules in edit mode is possible if 7REDEF is changed to |
-REDEF. Set 23D9=2D and B681=2D.

EASIER TESTING

The command --TEST (facing page) can be used to print the start address
of the module and leave the assembler for testing. The extra hyphen is
required because the I/0 buffer isn't cleared. --TEST also automatically
saves the pointers required for source code storage starting at addrass
BBED. Source code can then be saved by simply dumping GRPB-BCEA.

The listing also contains a re-entry routine (starting at ENTER) which
restores the pointers before entering edit mode. This would ordinarily be
used after loading source code from tape.

To substitute --TEST for 7TABLE, load it at B71F and load at 9SEB: 2D,
2D, 54, 45, 53, S54. MONITR should be the warm start address for the
monitor of your particular computer.

57

| |

SOURCE CODE TAPE RECORD FORM

To save:

Record pointer values below, -
Dump OAOO through OC7F.

To retrieve:

Initialize assembler.,

Hit reset.

Load module from tape.
Restore pointers.

Enter assembler from 05D6.
Ignore any error code.

, GLOBAL PRGLEN SYMTBL SYMNUM
Module Name ’ ID 003C 003D 0050,51 0056 , —

Permission is hereby granted to photocopy this page.

58

2K SYMBOLIC ASSEMBLER VERSION 1.0 - SYM USERS” GROUP
Begin session with G 5B8. Block checksum: 0405

00 01 02 03 04 0S 04 07 08 0% DA OB 0C 0D OE oOF
00 42 32 4B 43 4C 43 43 4C 44 43 4C 49 43 4C 54 44,85 BRKCLCCLDCLICLVD

~210 45 58 44 45 59 49 4E 38 49 4E 59 4E 4F 50 50 48,48 EXDEY INXINYNOPPH
0220 41 50 48 S50 50 4C 41 S0 4C S0 52 54 49 52 54 33,42 APHPPLAPLPRTIRTS
0230 53 45 43 53 45 44 53 45 4% 54 41 S8 54 41 59 54,09 SECSEDSEITAXTAYT
0240 33 58 54 58 41 54 58 53 54 59 41 43 S50 58 53 34,20 SXTXATXSTYACPXST
0250 58 4C 44 58 43 50 59 4C 44 59 53 54 59 41 44 43,FD XLDXCPYLDYSTYADC
0280 41 4E 44 43 4D S0 45 4F 52 4C 44 41 4F 52 41 33,9C ANDCMPEORLDAORAS
0270 42 43 53 54 41 41 S3 4C 4C 53 52 S52 4F 4C S2 4F ,68 BCSTAASLLSRROLRO
0280 32 44 45 43 49 4E 43 42 49 54 4A 4D 50 4A S3 52,15 RDECINCBITJMPJSR
0290 42 43 43 42 43 53 42 45 51 42 4D 49 42 4E 45 42,7C BCCBCSBEQEMIBNEB
‘B2A0 50 4C 42 56 43 42 56 53 20 20 41 20 23 20 54 20,3C PLBUCBVUS A # 2
02B0 5A S8 OA 5% 4% 58 49 59 20 20 20 20 58 20 59 20,35 2ZXZYIX1Yy Xy
02C0 49 20 00 27 19 19 1D 1A 1F 1IF 30 19 1D 1B 2E 19,54 1 ~ 0
02D0 2B 26 2E 2D 1C 27 27 38 30 2D 27 2F 00 F2 04 11,5C +&.- "“80-"/ r
D2E0 22 35 32 3A 31 50 &3 75 4E 0C 80 0C AS 02 OF 00,33 "52:1Pcun P
02F0 03 02 37 CO 02 11 00 02 01 OC F8 09 15 00 08 05,74 7o X

00 01 02 03 04 05 06 07 08 0% 0A OB OC OD OE OF

0300 08 FF FF FF FF 00 18 D8 58 B8 CA 88 E8 C8 EA 48,AC XX8J hHjH
0310 08 &8 28 40 &40 38 F8 78 AA AS BA 84 %A 98 04 4A,A8 h(ad*8xx*(: J
0320 ZA 6~ E0 FF A2 CO AD FF 69 29 C9 49 A9 09 ES E4,3F *j "2 i>I1) id
0330 86 A& C4 A4 B84 45 25 CS5 45 AS 05 ES 85 06 44 26,71 &D% e/ZEEY e F&

340 66 C4 ES 24 B4 94 75 35 D5 55 BS5 15 F5 95 14 356,83 fFf$4 uSUUS u V
650 36 76 D& Fé Bé 96 61 21 C1 41 A1 01 E1 81 71 31,71 &vWué a'Ada! a qi
~-60 D1 31 Bl 11 F1 91 90 BO FO 30 DO 10 S50 70 EC 8E,51 QQ@1 q OpOP Ppl
0370 AE CC AC 8C D 2D CD 4D AD 0D ED 8D OE 4E 2E SELE3 .L, m-MM-m N.n
0380 CE EE 2C 4C 20 BC FF 7D 3D DD 5D BD 1D FD 9D 1E,78 Nn,L (¥=11= 3
0390 5E 3E 7E DE FE BE FF FF FF 79 39 D% 59 BY 19 F?,D8 “>¥"™>y9YY? »
03A0 99 &C FF 88 29 A2 00 86 2A AD 06 Bl 29 99 30 00,26 1T X% % 1) 0
03B0 88 10 F8 A8 36 A4 35 Bl 30 D1 32 FO 02 A0 FF 88,48 x&&6$510Q2p
03C0 10 FS C8 DO 01 40 38 A5 30 ES 34 85 30 BO 02 Cé,B? uHP *840ed4 00 F
03D0 31 CA 10 E1 40 B5 00 C% 40 30 03 38 ES 07 29 0F,56 1J a5 1a0 8i »
O03E0 &0 20 DS 03 0A 0A OA 0A 85 2D ES 20 D5 03 05 2D,94 ™ U -h U -
O3F0 AA &0 C? 0A 30 03 18 &% 07 18 49 30 95 00 &0 48,20 **I 0 i i0 “H

00 01 02 03 04 05 06 07 08 09 0A 0B OC OD OE OF

0400 4A 4A 4A 44 20 F2 03 E8 &8 29 OF 20 F2 03 &0 38,92 JJJJ r hhy r '8
0410 86 2D AS 56 ES 2D 85 2B A% 00 85 2C 18 A0 02 26,3C =7Ve- +) &
0420 2B 26 2C 88 10 F? 38 AS 50 ES 2B 85 2B AS 51 ES5,12 +&, y8%Pe+ +¥Qe
0430 2C 85 2C &0 20 OF 04 A0 04 Bl 2B 85 29 C8 Bi 2B,S58 , ,° 1+ >Hi+
0440 85 2A &0 85 29 A% 00 85 2A 18 AS S0 &% 08 85 S0, BE **)) ® UPi P
0450 90 02 E& 51 A0 07 A% FF 91 S0 88 88 Bl 29 91 50,82 f&@ Y P 1> P
0460 88 10 F? A6 56 E8 B4 54 40 85 52 A2 S0 20 A3 03,C2 y&\Uh U~ R"P #
0470 FO 05 AS 52 20 43 04 20 OF 04 E4 56 &0 A2 42 20,E6 p YR C dur"B
0480 A3 03 FO 03 A9 31 &0 8& 2E AZ 49 20 A3 03 FO 03,11 # p >1° ."I # p
0490 AP 32 &40 A5 2E CY 19 10 02 AZ 00 C® 30 30 02 A2,82 (24,1 “ 100 *
0 08 EA ADS 2E DD C2 02 10 03 A? 33 40 DD CF 02 30,15 J#.1B 3310 0

B0 03 AP 33 &0 18 7D DC 02 85 37 AA BD 05 03 C9 FF,BA I3 I\ 7x=]
wd4C0 DO 03 AP 33 &40 EA AS 37 C% 1D 10 03 AP 2D &40 E&,A4 P)3 j%7I =¥
04D0 2F C9 2A 10 0A A2 1S 20 E1 03 8& 38 A9 2D &0 AZ,31 /1% " & gy- v
04ED 15 86 52 C? &1 10 20 A2 S0 20 A3 03 FO 03 A9 34,00 RlIa "P # p)4
04F0 40 20 34 04 FO 03 A% 35 40 84 38 AS 1C C% 20 FO0,41 > 4 p)5 841 p

03500
0510
0520
0530

"40

- 400
0540
0570
03580
05%0
05A0
0SB0
05Co
0SDO
0SEQ
0SF0

0400
04410
0&20
04630
04640
0650
0840
0670
04680

?0
w Al
04B0O
0s&CO
gépDo
04E0
04F0

0700
0710
0720
0730
0740
0750
0760
0770
0780
0720
0740
0780
07Co
Q7D0

00
03
15
A%
Do
El

34
c¢
20
?1

A0
85
50
ca
AZ
04
3A

00
Do
A%
85
c?
40
88
AS
2D
AP
01
34
&9
88
04
ZB
CS

00
58
58
07
44
El
95
A2
85
08
ES
Cé
50
18
3F
20
04

o1
AF
20
37
03
03
acC
3F
34
3E
a7z
3E
03
10
3F
20

C?

01
03
av
3D
20
AZ
8A
07
&0
3F
40
04
10
1
ce
20
00

01
20
38
cy
40
03
07
00
2D
DO
Cé
2D
AS
&5
4F
95
AS

02
34
43
&0
AP
84

&0

10
04
88
AS
18
AP
Fg
co
FF
2D

02
20
20
N
DO
0E
91
10
A2
40
cs
AS
09
57
FF
Al
Fo

02
83
AS
20
A0
84
CA
BS
20
05
2D
18
2C
3D
S1
00
3F

0z
&0
04
A%
38
39
AP
03
&C
10
3F
AT
43
k4
3F
03
Do

a3
77
&9
0és
03
20
2B
ccC
0?7
Al
B1

29
38
cs8
Do
08
01

03
gés
3E
Do
0s
i8
i0
00
1B
Ca
10
20
85
85
59
Ca
CS

04
A%
8&
2D
&0
Eé
00
A%
29
F8
71
3D
60
3F
10
AZ
04

g4
05
04
?1
234
E1
AP
EA
20
00
3E
Al
E?
AS
11
As
&0

04
84
&3
03
AS
45
FB
20
84
Eé
F8
cD
S1
40
&1
10
2A

as

ag
40
AS
2F
85
30
0o
AS
2B
&5
AP
85
10
2D
AS

03
AZ
Fo
2B
3F
03
20
20
El
B1
EO
01
62
24
AD
2B
A%

05
2D
2D
AP
40
40
20
47
ce
2D
A%
EA
AD
20
34
FB
Do

06
&0
AS
EA
1C
A%
52
40
&0
ov
88
2F
2D
0o
AS
846
01

0s&
0o
g3
AS
&0
A0
AZ
2E
03
3E
2A
Ad
38
&9
05
E4
0o

06
38
85
3F
21
85
Sb
8A
1B
AF
08
Aé
a7
02
80
Ad
(1]

07
EA
37
E4
Az
2D
AZ
234
20
ce
AS
85
&0
A0
3F
3A
C?

0?7
FO
AP
3F
AY
07
oc
06
84
AR
10
2E
ES
0o
B1
96
85

07
AS
3E
60
2B
40
07
ES
DO
08
85
3¢
AS
Eé
20
9é
A0

08
AZ
ce
3C
0o
&0
S0
41
40
20
3E
3D
D8
20
A2
AP
20

08
03
a4
c8
07
8A

¢S

ce
41
BD
03
EO
3E
21
2B
30
3E

08
57
cS
AP
cs
90
AS
EC
01
co
2D
20
41
41
$C
20
05

a¢
S0
=34
30
cC?
AS
20
&0
o%
Fa
21
10
AZ
AZ
02
01
Do

09
20
40
91
20
91
07
44
A2
05
91
&1
91
57
99
E3
AS

09
&5
3D
a7
AS
02
07
0é
oo
20
ce
OF
71
AY
A
34
B1

0A
20
10
0a
20
3A
A3
AY
A4
10
2B
03
18
21
20
85
gc

0A
49
846
2B
49
2B
Cca
DO
09
03
57
10
o7
40
oo
&0
40

0A
2D
30
20
41
ES
10
30
Cce
DG
20
04
2B
3F
01
04
2B

0B
A3
0A
20
Fo
cS
03
05
2F
Ag
18
A
BD
94
FF
2F
20

0B
05
3C
AP
04
Az
10
03
20
?1
&0
03
&0
As
00
20
85

oB
85
ES
&9
?1
41
CS
Fé
oD
aD
30
846
88
40
85
AS
P

oc
03
E4
34
05
0o
Fo
48
88
a7z
AS
42
E?
01
03
20
7D

oc
18
AY
2D
Fa
10
FB
AP
El
57
86
%1
18
3C
88
cB
57

ocC
57
AY
o4
2B
AY
EA
Az
Do
EA
as
S5é
AS
00
2F
3E
07

oD
FoO
3C
04
AZ
Fa
gc
A%
B?
20
3E
40
02
CA
AS
SD
04

oD
20
oo

40

03
20
20
3A
03
EC
2E
S7
c8
E8
10
17
AS

0D
20
2D
Fo
A2
20
20
oo
01
20
?5
AS
40
19
A2
C5
00

OE
05
10
Cs
1C
04
AD
75
37
%4
&5
24
25
10
3E
07
ce

OE
Bé
85
AS
AP
El
SD
&0
86
1D
AR
40
71
20
F8
A
41

0E
0z
60
03
0E
A2
4D
A9
40
42
00

2B

?1
iD
22
29
88

aF
AP, F9
03,8E
3F ,A4
20,D7

18,75

00,23
48,1D
00,1E
04,4F
2F,4C
56,37
3F, 1A
FB, 44
A2, 7E
AS,BA
2D, C0

OF

EA, 7A
3E, 25
07,93

44,84

03,48
07,A5
A9 ,37
40 ,AD
10,E8
20 ,E3
EC,DA
3E,B1
34,87
86,64
2D,9D
85,4B

OF

Eé,17
AS, D1
A9, B5
20,DA
0c,FaA
83, 4A
06,D7
C%,D3
83,D3
ES,B2
85, 4A
2B,B3
24,93
A%,0C
D0, 8B
10,F7

)6\)_\Jup # p)
C 8471i d«
27¥)-2jd<0 4 E?

Pog~~~ "1 p "

a 9f/)- V:E p

i) R'P # p %

I? 50)A) HYuH
4 1> 3 %/ 97
> x4 1 p oy i
AT+ Uy o+ Vles

> s=es/ =)BY$V

POC)- X" =j 7

J x)? “J (
S S Ar o
"-) /Y X

> I-

tI-P X 1 P

P w " p 1 6
Y iop OD™ O >

= +%PH +)-%

I POY?) i pobD

¥ a +II a
#D0" g ¢

Z Lj . IDP »:)
-t a All a a
2N 1> xE= W
“HI> % W .=
4 4 &.‘a W™
i 8i 8e> W' Hg>
WHZ*i W &<h 4
IP 1+ x
+ ! &+dV0c* K »-
Ep) >43 WiA

X -8Vle—- W ¥
X8¥%>e—- >E=0e)- %
I P Y2 i p 2
DY X3 +HXA +°
a ed 2 FfA)Y "
J 1 X EjiM
"5 G h Ou")
- I P I P I
P Jf-> 1 P j B
hF- x> =~I1 0 h
F— Mj&< V+
PZ, @ YA + %3 +
e= d fAY? *
?20QYai Yy s/nw)
J (& 4 YOEHP
APE*P 1+

0800
0810

0820

30
&
~d 50
0840
0870
0880
0890
08A0
08B0
08CO
08D0
08EOD
08F0

0900
0910
0920
0930
0940
0950
0940
0970

>80
¢
WAu
0980
09Co
09D0
09ED
09F0

@

F8
03
30
85
2D
BD
B1
15
15
Bl
60
40
E1
D¢
CS
03

00
58
38
AS
?1
AS
2F
29
Cé
26
ES
3E
B8
3F
3F
3F
2D

AZ
B1
04
11
0A
02
57
20
00
57
20
AP
03
o7
59
20

01
18
20
29
2B
3E
85
88
39
38
3E
cs
0%
42
22
54
50

01
3E
84
BD
18
02
A2
FF
88
AZ
4D
00
86
AS
30
Al

02
AS
B1
CS
18
CS
29
10
AS
ES
85
ca
Ca
435
45
41
52

CA
85
3A
A?
65
85
02
03
10
04
83
85
59
3E
12
08

03
3E
08
3E
65
3D
AS
Fo
39
5A
2D
2D
10
47
44
42
4%

E4
37
Az
0z
2D
10
20
&0
Fa
20
AZ
3E
AZ
CS
cS
EA

04
&35
A
30
2F
Do
3F
40
FO
85
AD
30
F7
49
45
4C
4E

3C
AZ
00
85
AA
AS
FF
B1
AS
FF
00
AS
0B
59
SA
EA

05
2F
2D
13
Ao
o1
85
AY
03
2F
3D
F7
4Cc
4k
44
45
54

10
ac
CA
12
BD
37
03
3E
37
03
BS
40
20
Do
10
18

08

a3

60
Ad
0é
60
26
FF
A
20
18
EA
B8
10
72
1F
oD

EQ
ce
10
B1
oo
ce
A5
Al
c?
Bl
00
85
E1l
02
oD
AS

07
3E
Adé
29
?1
85
AS
85
25
17
65
AP
05
0s
06
o7
0%

a0
1D
Fa
3E
02
1D
37
20
&9
3E
20
57
03
cé
24
57

o8
CS
96
C4
2B
SA
3D
38
&40
09
2F
2D
3F
2D
2D
2D
2D

0o
10
AS
38
85
10
cC?
aF
10
FO
47
AS
B8é
3%
38
65

0%
3D
20
oA

20
38
20
AS
AS
85
60
41
4C
41
53
49

B1
az
34
Ad
0OE
o1
26
a4q
01
05
8A
41
5A
CS
30
2F

0A
30
34
10
cA
17
ES
B1
59
3F
3D
AZ
53
4F
53
54
4E

57
AZ
0A
3A
BD
&0
10
Al
&0
AZ
ES
835
A%
SA
08
85

0B
C3
04
06
E4
09
3E
08
85
85
AD
47
53
43
53
4F
53

AZ
01
An
FD
o1
Eé
08
as
ES
ic
EO
58
02
Do
AZ
57

oc
&0
CS
A
3C
ig
A8
CS
3E
oB
00
BD
47
41

45
52
52

00
DD
BD
DC
02
2F
B1
B1
2F
20
23
A2
85
02
1F
20

0D
A
3F
FE
10

AS
B1

54
Ad
AS
B1

B8
4E
4C
4D
45
54

20
cC
AS
02
85
AD
3E
2B
A0
FF
30
07
39
Cé
20
02

OE
01
DO
Ao
DA
3E
3E
Do
oA
3D
oA
09
2E
65
EB
Ad
65

FF,D5
a7,7C
02,DA
85,04
0F,07
01,44
AZ,8C
99,09
02,E4
03,78
Fé,21
20,34

20,17

39,B9
FF,C9
Eé,65

OF
85,93
1A4,1C
07,7F
60,67
65,FC
91,D1
02,1A
FO,C9
38,38
91,99
9D ,DB
06,65
06,22
06,Dé
07,0A
09,05

" Jd< 1w

1> 7" 1 " IL
0 " J tx:r w=(
=) 12>88&: 3\
ol e —%= =
= #“71 A V4
1" Z71% 1"
AR 1+
X471 ¥/
K 1>p "

M *" 93 G h“#0wv

MY AP WA XY

a YY" a 2y @9

Y “>EYP F9EZP F9

EYD EZ $80 "
Vo AWes W f

X “res >E=0C)
81 '8V 4 E?PP
ZOE>X0 $2D2)™

+ e/ +jJd< 2»
YoE=P ™ 2 Se
/YA ®/=Be>(1>
> ¥*) 8 1 EZP
FRAPp »A 7Y >&2p
&8eZ2 / #? /=8
ey —V= e/ = 12
>HD-0wj)~""G=8
8 J wlL8 7ASSGN.
?BEGIN -LOCALe
?REDEFr -ASSEMK
?TABLE -STORE&
-PRINT -INSRTe

